

300 SERIES

LEL DETECTOR DETECTOR-TRANSMITTER FOR COMBUSTIBLE, TOXIC GASES AND OXYGEN

OPERATION AND MAINTENANCE MANUAL

The Fixed Gas Detection People

Ref.: NP300 GB Revision G

The Fixed Gas Detection People

GAS DETECTION

Thank you for purchasing an INDUSTRIAL SCIENTIFIC instrument. We appreciate your business.

We trust that our commitment to the technical excellence of our products will ensure your complete satisfaction.

Please read the following document carefully.

LIMITATION OF LIABILITY

- * **INDUSTRIAL SCIENTIFIC** will not be liable under any circumstances for material losses, personal injury or death resulting in whole or in part from the inappropriate use of this equipment, the installation or storage of this equipment not in conformance with the instructions and warnings presented in this manual and/or not in conformance with current standards and regulations.
- * **INDUSTRIAL SCIENTIFIC** neither allows nor authorizes any other company, individual or legal entity to make any claims as to the liability of **INDUSTRIAL SCIENTIFIC**, even if said company, individual or legal entity is directly involved in the sale of **INDUSTRIAL SCIENTIFIC** products.
- * In no event will INDUSTRIAL SCIENTIFIC be liable for any direct or indirect damage including those resulting from the sale and the use of its products IF THOSE PRODUCTS WERE NOT SPECIFIED AND SELECTED BY INDUSTRIAL SCIENTIFIC FOR SUCH USE.

OWNERSHIP CLAUSES

- * The images, blueprints, specifications and information contained in this document belong to INDUSTRIAL SCIENTIFIC.
- * This information may not be physically, electronically or otherwise reproduced, copied, disclosed or translated, either in part or in whole, or used in the manufacturing or sale of **INDUSTRIAL SCIENTIFIC** equipment, nor for any other reason without prior permission from **INDUSTRIAL SCIENTIFIC**.

WARNINGS

- * This document is not contractual. On behalf of its clients, **INDUSTRIAL SCIENTIFIC** reserves the right to modify the technical characteristics of its equipment without notice to improve product performance.
- * **CAREFULLY READ THIS DOCUMENT BEFORE USING THE PRODUCT:** this document should be carefully read by any individual who has or who will have the authority to use, maintain or repair this equipment.
- * Any and all warrantees and performance claims will only be valid if the equipment is operated, maintained and repaired in accordance with INDUSTRIAL SCIENTIFIC directives, by INDUSTRIAL SCIENTIFIC personnel or by personnel appointed by INDUSTRIAL SCIENTIFIC.

WARRANTY

* Two-year return to factory warranty under normal operating conditions on parts and labor, consumable materials excluded (sensors, filters, etc.)

CONTENTS

I.	INTRODUCTION	5
1	. General Information	5
2	. Composition	5
II.	INSTALLATION AND CONNECTIONS	5
1	. INSTALLING THE DETECTORS	5
-	1.1 Layout	
	1.2 Mechanical installation	6
2	. ELECTRICAL CONNECTIONS	7
	2.1. Wiring specifications	
	2.2. Cable glands and cable types	
	2.3. Connections for the various types of sensors2.4. Operating mode	
III.	POWERING UP AND USE	
1	Powering up	
2	. 4-20 mA analog output	12
IV.	MAINTENANCE	. 12
1	Calibration	13
	1.1. Recommendations	13
	1.2. CEX 300 calibration	
	1.3. CTX 300 calibration	
	 1.4. COX 300 Calibration, "OXYGEN" type 1.5. CSC 300 (semiconductor) calibration 	
	1.5. CSC 500 (semiconductor) calibration. 1.6. CTX300 CO ₂ calibration.	
	1.7. CTX300 CO2 Linearization card	
2		
3		
4		
	4.1. CEX 300-type Combustible Sensor	
	4.2 CTX/COX 300 Toxic or Oxygen Sensor	
	4.3 CSC300 Semiconductor Sensor	
	4.4 CTX300 CO2 Sensor	30
	PARTICULAR SPECIFICATIONS FOR USE IN EXPLOSIVE ATMOSPHERES IN CORDANCE WITH THE EUROPEAN ATEX 94/9/CE DIRECTIVE	. 31
1.	SPECIFICATIONS FOR MECHANICAL AND ELECTRICAL INSTALLATIONS IN	
	PLOSIVE ZONES.	. 31
2.	PERFORMANCE SPECIFICATIONS FOR THE CEX 300 EXPLOSIVE GAS DETECTOR	. 31
	2.1. Technical Specifications and Particular Instructions for the CEX300 Explosive Gas Detector.	32
3	MARKINGS:	
	CERTIFICATIONS	-
	NEX 1	
	NEX 2	
AN	NEX 3	. 42

I. INTRODUCTION

1. General Information

300 Series gas detectors are designed to measure combustible toxic gases or vapors and oxygen. With robust materials, a specifically-adapted design, appropriate accessories, INOX bolts, and a polyamide case (IP66) (IP55 for the CO_2 version), 300 series detectors are designed to withstand the roughest conditions.

2. Composition

Concerture.	OEX 300	CTX 300			
Sensor type	CEX 300	Toxic	Oxygen	Semiconductor	CO ₂
Gases detected	Combustible gas	Common toxic gases detected	Oxygen	- Combustible gas - Solvents - Some Freons	CO ₂
Detection method	Catalytic oxidation	Electrochemical sensors ¹	Electrochemical sensor	Semiconductor sensor	Infrared absorption
Type of sensor pack	Explosion-proof sensor	Pre-calibrated removable sensor pack ²	Pre-calibrated removable sensor pack: 0-30% scale or 0-100% volume.	Removable sensor pack, not pre-calibrated	Removable sensor pack Infrared column, not pre-calibrated
Options	Cable gland for flexible cable or armored cable ³	With display	With display		
Certification	ATEX II 2GD ⁴	None	None	None	None

II. INSTALLATION AND CONNECTIONS

For use in explosive atmospheres: in accordance with the European directive ATEX 94/9/EC, you must read the "Particular Specifications" paragraph.

1. INSTALLING THE DETECTORS

1.1 Layout

While the measuring sensor is always located on the underside of the detector, several factors determine where the detector should be located:

- If the gas being measured is lighter than the air, place the detector near the ceiling.
- If the gas is heavier than the air (CO₂ and Freons, for example) place the detector close to the floor.
- Near offtake points.
- Generally, in locations where gas may accumulate, taking into consideration both
 - the effects of temperature, and
 - the direction of winds.

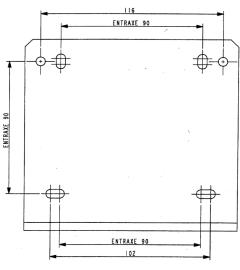
¹ Specific to each gas

² Choice between several scales

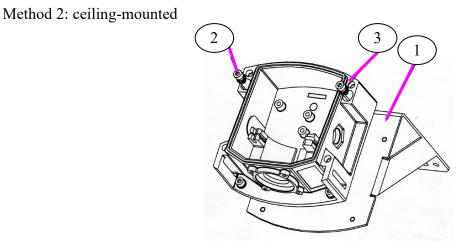
³ Requires grounding

⁴ EEx ed IIC T6 (-20 to 60°C)

Factors to consider when determining the best placement for the detector:


- \Rightarrow Potential sources for vapor and gas emissions
- \Rightarrow Characteristics of gases and vapors (density)
- \Rightarrow Air circulation
 - inside: mechanical or natural ventilation
 - outside: wind direction and velocity
- \Rightarrow Effects of temperature
- \Rightarrow Local constraints (air flow, water)

Detectors should always be located in an easily accessible location for maintenance purposes.


Special accessories may be necessary to protect the equipment against any liquid projectiles, dust, direct sunlight or low temperatures in the area.

1.2 Mechanical installation

Method 1: wall-mounted

Drilling diagram

Same drilling diagram, support brace used

REF.	No.	DESCRIPTION	OFSA REF	MATERIAL
1	1	CEX / CTX300 BRACE	6132380	INOX
2	4	CHC LI2 SCREW	6902218	INOX
3	4	A25 ACCD WASHER	6905518	•

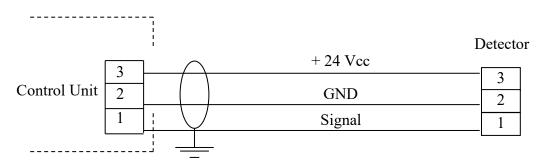
2. ELECTRICAL CONNECTIONS

2.1. Wiring specifications

<u>If needed</u>: consult the grounding instructions for INDUSTRIAL SCIENTIFIC instruments and related connection materials in Annex 1.

2.2. Cable glands and cable types

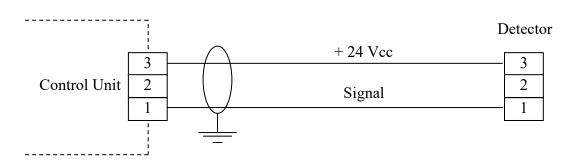
Sensor types	Cable gland type	Cable entry
CTX 300 (TOX and OX) CTX 300 SC CTX 300 CO ₂	Nickel-plated brass Neoprene	Between 6–11 mm
CEX 300 with shielded cable	Nickel-plated brass	Between 6–11 mm
CEX 300 with armored cable ⁵	Double compression nickel- plated brass	Between 8.5–16 mm

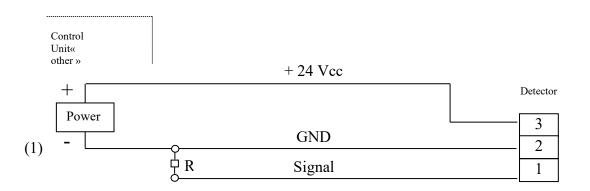

2.3. Connections for the various types of sensors

	CEX 300	CTX 300 (TOX and OX)	CTX 300 (TOX and OX) without display	CTX 300 SC and CO ₂ without display
Output signal	voltage	4-20 mA	4-20 mA	4-20 mA
Number of wires	3 wires	3 wires	2 wires	3 wires
Max. impedance (Z) of the line		o the characteristics for the central controller sensor only connects to INDUSTRIAL SCIENTIFIC central controllers		

⁵ Here, the CEX 300 case is equipped with a grounding reclaim screw to connect the cable armor to the ground cable.

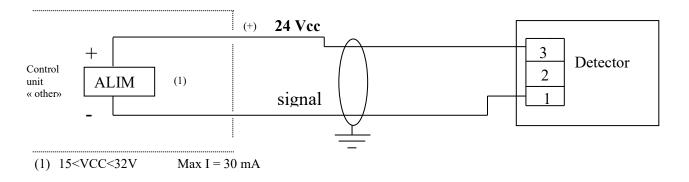
a) Connection of a 3-wire sensor to an INDUSTRIAL SCIENTIFIC central controller


- 1 wire (+) continuous power supply \rightarrow No. 3
- 1 wire (-) continuous power supply (0 volt mass) \rightarrow No. 2
- 1 output signal wire \rightarrow No. 1

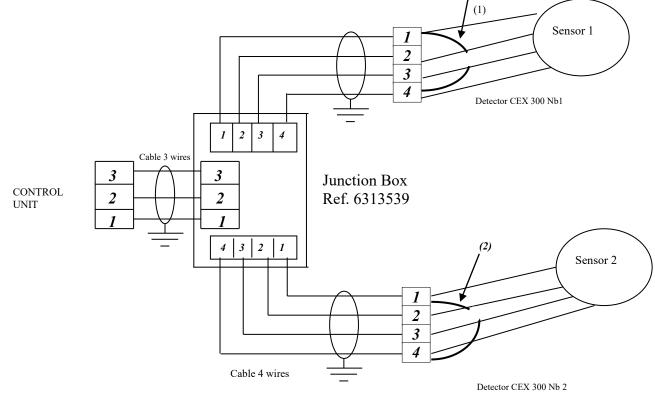

b) Connection of a 2-wire sensor to an INDUSTRIAL SCIENTIFIC central controller

- 1 wire $(+) \rightarrow \text{No. } 3$
- 1 signal wire \rightarrow No. 1

 $\int Formant la boucle de courant 4/20 mA sur 2 fils$



c) Connection of a 3-wire CTX300 sensor to a non-INDUSTRIAL SCIENTIFIC controller and to an internal power supply.



- (R) Maximum resistance = 200Ω .
- (1) $15 \le VCC \le 32$ $18 \le VCC \le 30$ for CO2 Max I: 130 mA

d) Connection of a 2-wire 4-20mA sensor to a non-INDUSTRIAL SCIENTIFIC controller and to an internal power supply.

e) Connection of two CEX 300-type EXPLO sensors to the same measuring line

(1) and (2) \bigwedge Check to ensure that terminals 1 and 4 are not connected

This only applies when the 2 sensors are located in the same room, protecting the same installation.

2.4. *Operating mode* a) CTX300 with display

- Remove the 4 screws (Ref. 1 in Fig. 1)

- Remove the cover (Ref. 2 in Fig. 1)

FIG. 2

- Gently remove the screw (Ref. 3 in Fig. 2)

- Completely remove the screw (Ref. 4 in Fig. 2)

FIG. 3

- Turn the display circuit as shown above (Ref. 5 in Fig. 3)

- Connect the cable (see 2-3: Connections for the various types of sensors) to the connector (Ref. 6, Fig. 3)

- Return the display circuit to its original position and replace the cover

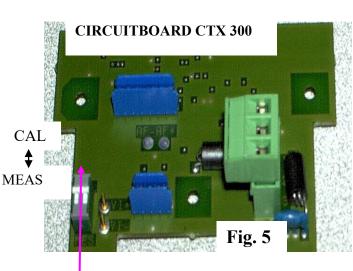
b) CEX 300 and CTX 300 without display

- Lift the cover (Ref. 1 in Fig. 1)

- Remove the cover (Ref. 2 in Fig. 2)

and proceed to wire the sensor according to the terminal location

III. POWERING UP AND USE


1 Powering up

The sensor turns on when connected to a power supply. If the sensor has a display, the green LED will be lit (Ref 1 in Fig 4) and a value will appear on the display screen (Ref. 2 in Fig 4).

Fig. 4

In case of a problem, verify that the maintenance switch (Ref. 1), located on the main circuit is in the "MES" (measure) position.

Ref. 1

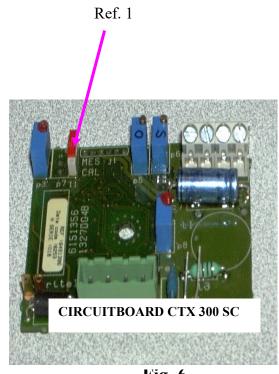


Fig. 6

CO₂ CIRCUIT

2. 4-20 mA analog output

For CTX 300 sensors, except for the CO_2 sensor, the 4-20 mA output current is proportional to the gas level.

Notes:

- The CO₂ sensor can be equipped with a linearization board.
- MX 15 and MX 32 central controllers that integrate with the linearization of the CO₂ sensor are available upon request
- The MX6 2 integrates with the linearization of CO₂ sensors.

The various states of the output current include:

- $\leq 1 \text{ mA}$ to indicate a fault
- 2 mA in "calibration" position (except for the CO₂ sensor that does not have a calibration function)
- between 4 and 20 mA for measurement values
- ≥ 20 mA if levels exceed measurement range

IV. Maintenance

Warning: The adjustment operations in this paragraph are reserved for authorized, trained personnel because they may compromise detection reliability.

Gas detectors are safety devices. In consideration of this, Industrial Scientific recommends regular testing of fixed gas detection installations. This type of test consists of injecting a standard gas of sufficient concentration into the sensor to set off the pre-adjusted alarms. This test does not, in any event, replace a full calibration of the sensor.

Industrial Scientific also recommends completely calibrating detectors with a known and certified concentration of gas every three or four months.

Frequency of gas testing depends on the industrial application in which the sensors are used. Inspection should occur frequently during the months following installation startup, later it may be spaced out if no significant problem is observed. Time intervals between tests should not exceed three months.

If a detector does not react upon contact with gas, it must be calibrated. Calibration frequency should be adapted based on test results. However, it should not be greater than one year.

Industrial Scientific recommends using a test gas to calibrate detectors.

The site manager is responsible for implementing the safety procedures on his site. Industrial Scientific is not responsible for implementing safety procedures.

<u>The CEX 300</u>

To reach a SIL Capability 1 level according to European standard EN50402, (requirement relative to the functional safety of fixed gas-detection systems), the maintenance period for explosive-gas detectors must be no more than six months. In SIL2 level installations, the maintenance period must be at most three months.

These recommendations are compliant with the standards and directives for safety in industrial sites. Nevertheless, Industrial Scientific – Oldham shall not be held responsible for safety procedures put into effect on a site.

1. Calibration

1.1. Recommendations

Calibration consists of adjusting the zero of the clean air sensor and adjusting sensitivity with a test gas. Adjustments are made at the sensor level or on the control unit (as for CEX 300). To adjust settings (ZERO and SENSITIVITY) on the control unit, refer to the notice displayed therein.

Equipment needed to calibrate the detector correctly:

- flexible plastic tubing (Ref. 1)
- manometer + regulator valve for the compressed gas tanks (Ref. 2 Fig. 8)
- 0 to 601/h flow meter (if the tank is not equipped with one).
- calibration pipe (Fig. 8 Ref. 3), which may vary depending on the nature of the gas (see Annex)
- one tank of test gas (Ref. 4)

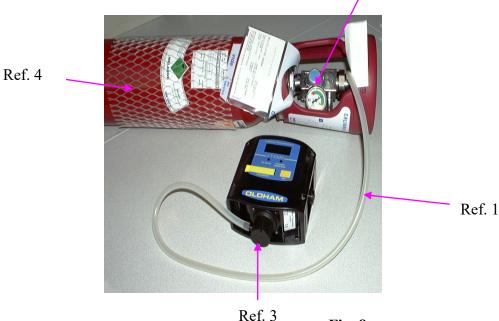
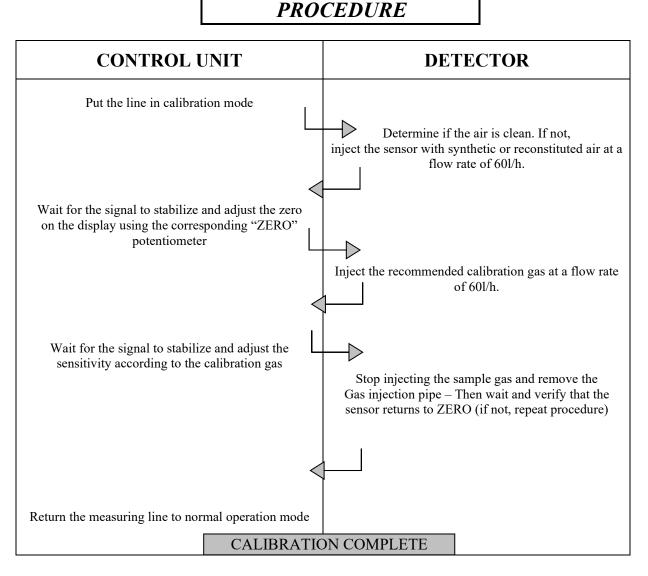


Fig. 8

Ref. 2

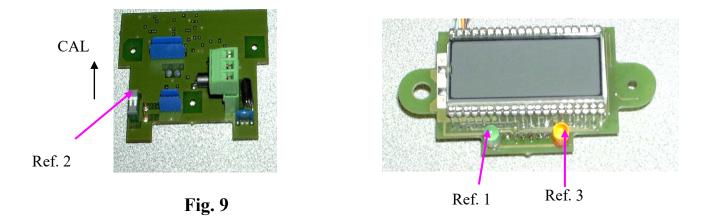

Zero adjustment should be performed in a gas and vapor free area. If this is not possible, synthetic bottled air can be injected at a rate of 601/h.

Use a bottle of test gas to adjust sensor sensitivity (concentration close to the alarm threshold or corresponding to 30% of the measurement range at a minimum). The recommended rate is 601/h.

<u>Note</u>: When dealing with dangerous gases, you MUST consult a specialized INDUSTRIAL SCIENTIFIC technician or use another sensor pack recently pre-calibrated at a factory.

Note: The detector should be calibrated using the intended flow-rate. The actual concentration of gas may be underestimated if the detector was calibrated with too high of a flow rate.

IMPORTANT: For CEX 300 sensors, the calibration gas should contain 21% oxygen.



1.2.CEX 300 calibration

.2.CLA 500 cuilor allon

1.3.CTX 300 calibration

Method 1: CTX 300 with display (excluding O₂, see page 17)

The sensor is operating: the green light (Ref. 1, Fig. 10) is lit and the display screen shows the measurement level.

Flip the maintenance switch (Ref. 2, Fig 9) into the "CAL" (calibration) position: the yellow light (Ref. 3, Fig. 10) will be lit and the sensor will send a 2 mA current to the central controller (maintenance mode).

Verify that the sensor is located in a clean-air environment. If not, inject synthetic air at a flow rate of 30 l/h.

Wait for the measurement to stabilize (displayed on screen) and adjust the ZERO by using the ZERO potentiometer located on the sensor pack. (Ref. 1, Fig. 11)

Fig. 11

Fig. 12

Inject the recommended calibration gas at a flow rate of 30 l/h.

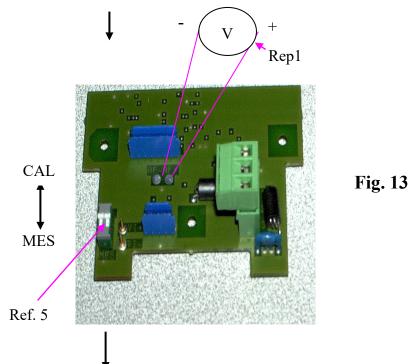
¥

Wait for the measurement to stabilize and adjust the sensitivity by using the sensitivity potentiometer located on the sensor pack. (Ref. 2, Fig. 11)

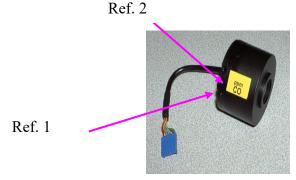
Stop injecting the calibration gas. Remove the gas injection pipe, then wait and verify that the signal returns to ZERO (repeat procedure if it does not).

Flip the maintenance switch into the "MES" (measure) position. The yellow light will turn off.

CALIBRATION COMPLETE


Method 2: CTX 300 without display except for O₂ – SC – CO₂

The sensor is operating:


Flip the maintenance switch (Ref. 13, Fig 5) into the "CAL" (calibration) position: the sensor will send a 2 mA current to the central controller (maintenance mode)

Verify that the sensor is located in a clean-air environment. If not, inject synthetic air at a flow rate of 30 l/h (follow the instructions included in the calibration kit)

Connect a voltmeter to the V+ and V- terminals (caliber mV/DC) (Ref. 1, Fig. 13).

Wait for the signal to stabilize and adjust the ZERO by using the ZERO potentiometer located on the sensor pack. (Ref. 1, Fig. 14) The output signal should be 0m V

Now inject the recommended test gas at a flow rate of 30 l/h (use the calibration kit and follow all recommendations)

Wait until the signal has stabilized, read the mV value on the voltmeter (Fig. 13, rep 1), with the full scale at 1600 mV, calculate the value to be read as a function of your test gas. Adjust using the potentiometer (Fig. 14, rep 2).

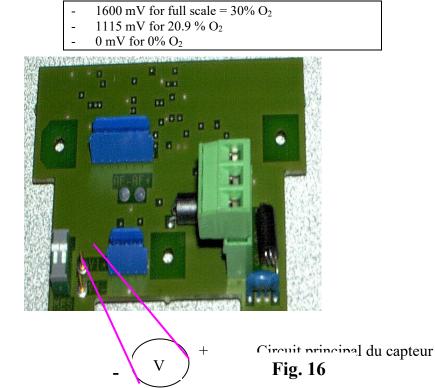
Example: CO sensor scale 0-300 ppm / test gas injected at a content of 100ppm

Shut off the calibration gas injection and withdraw the gas injection pipe. Then wait and check that the scale has returned to zero (otherwise repeat the procedure).

Reading 533 mV

Switch the maintenance on/off switch to the "MES" (measure) position (rep 5, Fig. 3)

1.4. COX 300 Calibration, "OXYGEN" type


COX 300 "oxygen" with display screen.

See paragraph 1 - 3 (Method 1). Proceed with adjusting sensitivity ONLY by injection of test gas.

COX 300 "oxygen" without display screen or diodes (DEL)

See paragraph 1 - 3. (Method 2). Proceed ONLY with sensitivity adjustment.

Signal value in mV =

Notes:

The signal sent from the CTX/COX 300 (toxic or oxygen) sensor to the central controller can be measured on the main circuit by connecting a millivoltmeter to the pins designed for this purpose (Fig. 16).

-	400 mVCC → 4 mA	
-	2 VCC → 20 mA	

1.5. CSC 300 (semiconductor) calibration

Flip the switch (Ref. 1, Fig. 17) into the "CAL" position.

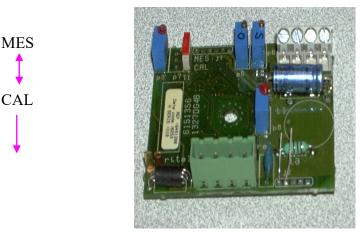
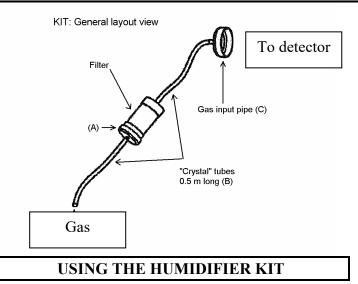



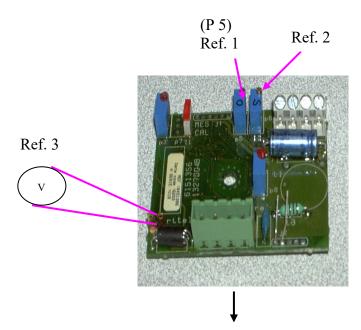
Fig. 17

Circuit du capteur CTX/CSC 300

Ensure that the sensor is in clean air, otherwise inject synthetic air into it using the calibration kit and referring to the recommendations below:

Important: to correctly calibrate a sensor equipped with a semi-conductor cell, use of a humidifier kit is MANDATORY (ref: 6335919) – Fig. 18

Lift the lid (Fig. 18 ref. A) and, using a washbottle, moisten the filter, without saturating it, with distilled water.


Replace the lid and check that all parts are properly assembled and that the assembly is fully airtight.

Adjust the flow rate to 60 l/h and wait 10 minutes until the humidifier is fully purged.

Apply the gas introduction pipe to the nose of the sensor and wait at least five minutes for the measurement to stabilize.

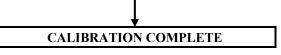
Note: the sensor must be powered for at least two hours before any adjustment can be made.

Connect a voltmeter as indicated (Fig. 19 – Ref. 3) and adjust, using potentiometer P5 (Fig. 19, Ref. 1). The output signal must be equal to **880 mV**.

Fig. 19

Next, inject the calibration gas at a flow rate of 30 l/h (See Annex 2).

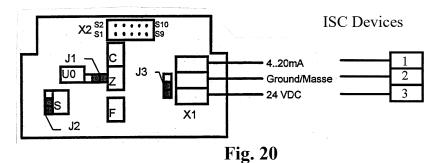
Wait for the signal to stabilize and adjust the signal with the sensitivity potentiometer (Ref. 2, Fig. 19).


The output signal should be:

U = 880 mV + 3520 mVSensor measurement range

EXAMPLE:

Sensor measure (% of full range)	Output signal (mV)
0	880
50	2640
100	4400


Stop injecting the calibration gas and verify that the reading returns to zero (880 mV). If it does not, repeat the procedure.

Flip the switch (Ref. 1, Fig. 17) into the "MES" position.

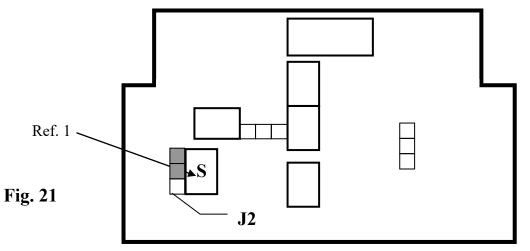
1.6. CTX300 CO₂ calibration

Warning: the sensor should be turned on for 15 minutes before adjustments are made. The following text describes the steps necessary to adjust the transmitter (first calibration)

!! WARNING!!

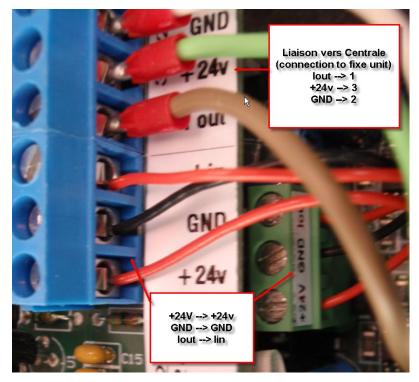
Adjustment

If the current loop of the output signal has an impedance of 500 ohms, the power supply should never fall below 23 V DC.


OUTPUT SIGNAL ZERO ADJUSTMENT = 4 mA

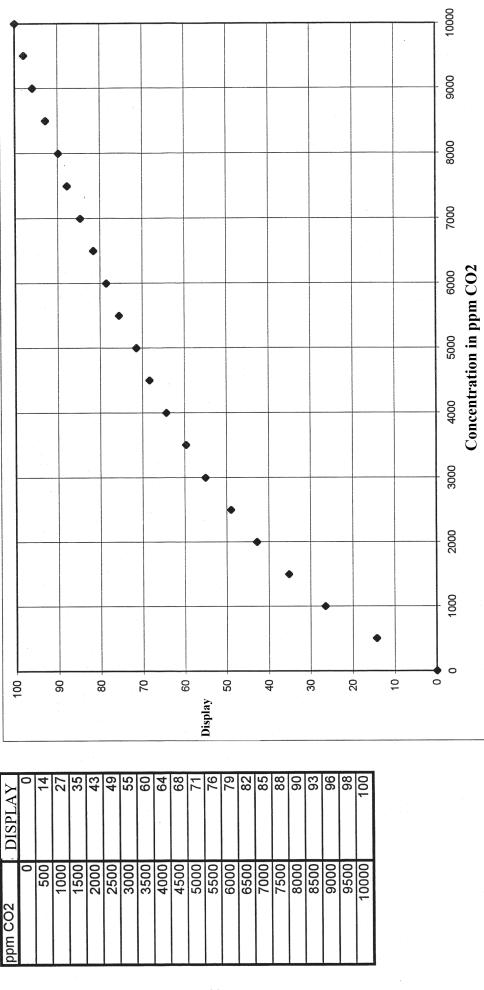
Inject nitrogen at a rate of 30 l/h.

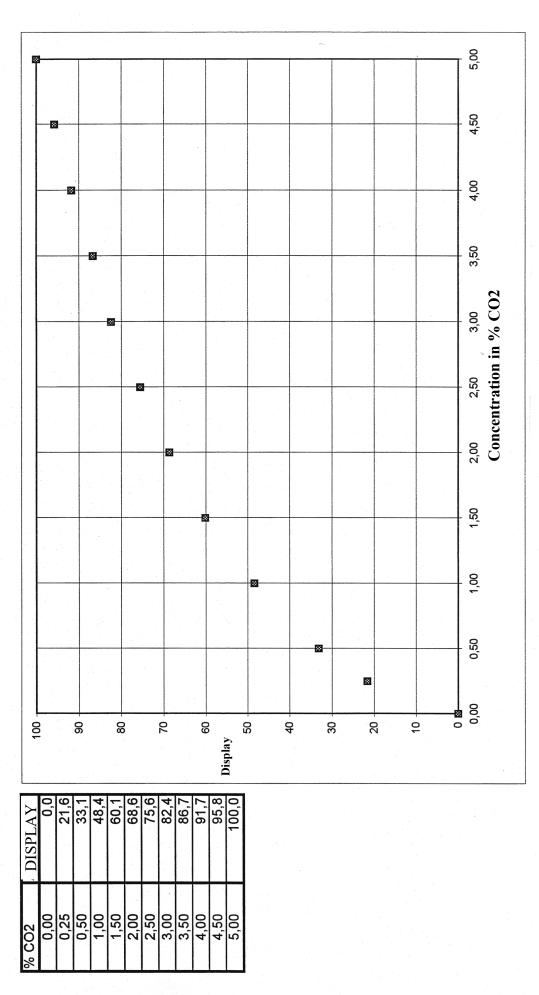
On the X1 terminal board, place an ammeter between terminals 1 and 2 (-). With the potentiometer Z, adjust the current to 4 mA.


With the ammeter still connected, inject the test gas at a rate of 60 l/h. Adjust the sensitivity with the potentiometer S (Ref. 1, Fig 21). Refer to the following calibration curves for sensors without linearization cards.

If this fails, flip the J2 jumper and begin again.

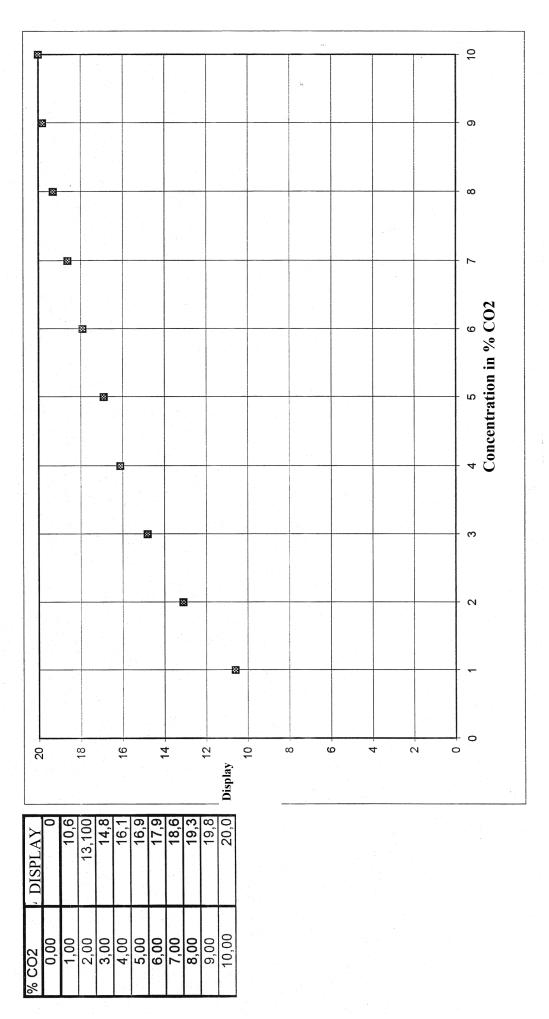
1.7.CTX300 CO2 Linearization card


If you use a linearization card, the connection is the following :

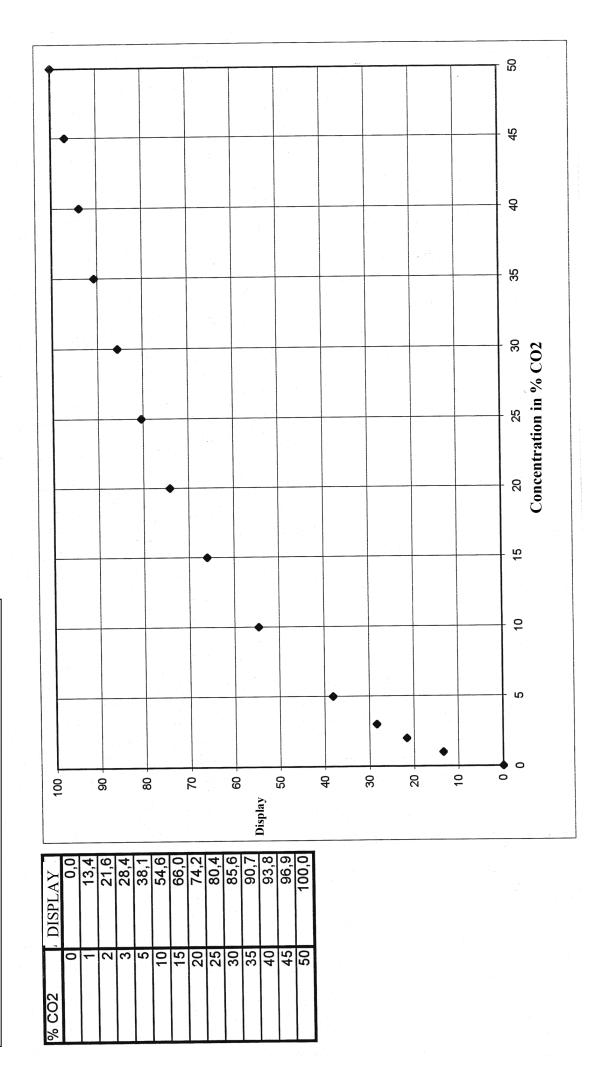

CALIBRATION CURVES

CO2 - IR Transmitter Output Signal

CO2 DETECTOR 0-10000 ppm (1%) measurement range



CO2 DETECTOR 0-5% CO2 measurement range


23

CO2 DETECTOR 0-10% CO2 measurement range

24

CO2 DETECTOR 0-50% CO2 measurement range

2. Replacing a sensor

Sensors must be replaced:

- when calibration is no longer possible (no sensitivity)
- during preventative maintenance, the replacement sensor should be identical to the original sensor (same gas, same range)

After a sensor has been replaced, a calibration or test (for pre-calibrated sensors) must be conducted.

3. Disposal

For the preservation, protection and improvement of environmental quality, and for the protection of human health and the prudent and rational utilization of natural resources, the CEX/CTX 300 must be disposed of separately from electronic equipment and cannot be disposed of with normal household waste. The user therefore has an obligation to separate the CEX/CTX 300 sensor from other waste to ensure that it is recycled safely for the environment. For further details on existing collection sites, contact the local administration or seller of the product.

4. **Replacement Parts List**

DESCRIPTION	REF
CEX 300 standard:	WCE30FD
CEX 300 with cable glands for armored cable	WCE30FA
TOOLS CEX 300 TOOL KIT	6147867
ACCESSORIES MOUNTING BRACE + bolts (CEX 300 ceiling mount)	6322420
GAS COLLECTOR (INOX)	6323607

4.1. CEX 300-type Combustible Sensor

GAS INTRODUCTION DEVICE	6331141
GAS FLOW HEAD	6327905
DEVICE FOR REMOTE GAS INTRODUCTION	6327906
ANTI-PROJECTION DEVICE	6331166
REPLACEMENT FILTERS	
PTFE PROTECTOR FILTER	6335953
ACTIVE CHARCOAL PROTECTOR FILTER	6335954
REPLACEMENT SENSORS	
Standard explosimetric sensor	6313662
REPLACEMENT PARTS	
Metallic cable glands (6-11 mm)	6143442
Double compression cable gland for armored	6143395
cable Self-adhesive front panel	6815918

4.2 CTX/COX 300 Toxic or Oxygen Sensor

DESCRIPTION	OFSA REF
TOOLS	
CTX 300 TOOL KIT	6147868
ACCESSORIES	
MOUNTING BRACE + bolts (CTX 300 ceiling mount)	6322420
GAS COLLECTOR (INOX)	6323607
GAS INTRODUCTION DEVICE FOR O ₂ , CO, H ₂ S, NO, H ₂	6331137
FOR COMBUSTIBLE AND OTHER TOXIC GASES	6331141
GAS FLOW HEAD	6327905
Device for remote gas introduction	6327906
REPLACEMENT FILTERS	
PTFE PROTECTOR FILTER	6335953
PRE-CALIBRATED O2 SENSOR PACK	
CTX 300 O2 0-30% vol SENSOR PACK	6313754
CTX 300 O2 0-100% vol SENSOR PACK	6313660

PRE-CALIBRATED TOX	X SENSOR PACK		
CTX 300 SENSOR PACK	100 ppm	6313627	
	CO – 300 ppm	6313628	
	CO – 1,000 ppm	6313629	
	CO – 1% vol	6313631	
	CO – 10% vol	6313632	
CTX 300 SENSOR PACK	H ₂ S - 30 ppm	6313633	
	H ₂ S – 100 ppm	6313634	
	H ₂ S – 1,000 ppm	6313635	
CTX 300 SENSOR PACK		6313636	
	NO – 300 ppm	6313637	
	NO – 1,000 ppm	6313638	4
CTX 300 SENSOR PACK		6313639	
	NO2 – 30 ppm	6313640	
CTX 300 SENSOR PACK	ETO - 30 ppm	6313645	
CTX 300 SENSOR PACK	SO ₂ -10 ppm	6313646	
	SO ₂ – 30 ppm	6313647	
	SO ₂ – 100 ppm	6313648	
CTX 300 SENSOR PACK	CL ₂ -10 ppm	6313649	
CTX 300 SENSOR PACK	H ₂ - 2000 ppm	6313650	
	H ₂ - 2% vol	6313651	
CTX 300 SENSOR PACK	HCL - 30 ppm	6313652	
	HCL – 100 ppm	6313653	
CTX 300 SENSOR PACK	HCN 10 ppm	6313654	
CIA 500 SENSOR FACK	HCN – 30 ppm	6313655	
CTX 300 SENSOR PACK	• •	6313656	
	NH ₃ – 1000 ppm	6313657	
	NH ₃ 0 to 5,000 ppm	6313893	
CTX 300 SENSOR PACK	HF – 10 ppm	6313675	
CTX 300 SENSOR PACK	03-1 ppm	6313676	
CTX 300 SENSOR PACK	PH ₃ -1 ppm	6313677	
CTX 300 SENSOR PACK		6313678	
MISC. REPL	ACEMENT PARTS		
Cover without display		6323	3608
Cover with display			3609
CTX 300 without display l			5919
CTX 300 with display labe			5921
Display card			1466
Sticker labels Motherboard			5923
		645	1465

4.3 CSC300 Semiconductor Sensor

DESCRIPTION	OFSA REF
TOOLS	
CSC 300 TOOL KIT	6147868
ACCESSORIES	
MOUNTING BRACE + bolts	
(CSC 300 ceiling mount)	6322420
GAS COLLECTOR (INOX)	6323607
Calibration KIT (humidifier filter + pipe)	6335919
HUMIDIFIER FILTER	6335918
AVAILABLE SENSORS	
CSC50 FG 318 SENSOR	WC30CLM
SENSOR	WC3050L
SENSOR	WC30F22
SENSOR	WC30F13
SENSOR	WC30C0V
REPLACEMENT PARTS	
MOTHERBOARD	6451396
PG9 CABLE GLAND	6143428

4.4 CTX300 CO2 Sensor

DESCRIPTION	OFSA REF
TOOLS	
CTX 300 TOOL KIT	6147868
MOTHERBOARD	6451618
GAS INTRODUCTION DEVICE	6799188
REPLACEMENT SENSOR	
CO ₂ SENSOR 0-1%	6451612
CO ₂ SENSOR 0-5% or 0-10%	6451611
CO ₂ SENSOR 0-50%	6451610
REPLACEMENT PARTS	
STICKER LABELS	6815923
SELF-ADHESIVE FRONT PANEL	6815919
PG9 CABLE GLAND	6143429
LINEARIZATION CARD	6351233

V. Particular Specifications for use in Explosive Atmospheres in Accordance with the European ATEX 94/9/CE Directive.

The CEX 300 detector meets all requirements of the European ATEX 94/9/EC Directive pertaining to explosive atmospheres.

With performance test tested by INERIS (*the French National Institute for Industrial Environment and Risks*), the CEX 300 is designed to measure explosive gases and is categorized as a security device and is used to limit the risks of explosion.

Information in following paragraphs must be taken into account and followed by the person responsible for the equipment installation site. Refer to the provisions of European ATEX Directive 99/9/EC, concerning the improvement of safety protection and the health of workers exposed to the risks of explosive atmospheres.

1. Specifications for mechanical and electrical installations in Explosive Zones.

All installations must be in compliance with currently enforced standards, notably standards EN 60079-14, EN 60079-17, and EN 50281-1-2.

- This equipment is intended for surface industries in Group II, Category 2, Zone 1 and 2 (Gas) and for Zone 21 or 22 (Dust) for ambient temperatures between -20°C to 60°C for a T6 temperature class and between -20°C to 70°C for a T5 temperature class.
- The cables will be mechanically protected.
- The transmitter body will be grounded with an external or internal terminal, both being protected against corrosion. The operator should regularly clean the equipment to prevent the build-up of dust on equipment surfaces.
- Detectors will be mechanically installed in such a way that the sensor will be oriented on the underside of the detector. Tilting the detector at an angle of 45° or more past vertical can cause measurement errors.
- Power supply: voltage at sensor terminals = 2.8 V max., Max. power = 0.8 Watts
- Consumption: 400 mA max.

2. Performance Specifications for the CEX 300 Explosive Gas Detector

The CEX 300 sensor is classified as a safety device and can help to mitigate the risks of explosion.

The detector conforms to the following European standards:

- European standards EN 50054 and EN 50057 for Methane gas (test gas), Propane and Hydrogen (gas following response curves), when used with INDUSTRIAL SCIENTIFIC central detection controllers types SV4B, MX 15, MX 32, MX 42A, MX 48, and MX 52.
- Explosive gas detectors are conform with the European standard EN50402. These detectors have SIL-capability level 1 with a calibration period of six months and SIL-capability level 2 with a calibration period of three months.

2.1. Technical Specifications and Particular Instructions for the CEX300 Explosive Gas Detector

Sensor type				C1000			
Max. concentration				100% LEL			
אומא, נטוונפוונו מנוטוו			100% LEL				
System			Catalytic				
Life expectancy	Life expectancy > 36 months						
Storage			Keep away from extreme temperatures (- $10^{\circ}C < T < 35^{\circ}C$) (10% < Relative Humidity < 60%) 6 months max.				
Temperature range	ure range			-25°C to 55°C			
Humidity range				0% RH to 95% RH			
Pressure range			1 bar ± 10 %				
Linear variation (met	hane scale)	eale)Between 0 and 70% LEL: $\leq 1\%$ LELBetween 70 and 100% LEL: $\leq 7\%$ LEL					
Measurement reproducibility			\pm 2 % of the measured value \pm 1 LEL (or \pm 0.05 % CH ₄)				
Long-term drift	Zero point:			< 5% LE	L methane / ye	ear	
under normal	Sensitivity		Standard drifts				
operating	Methane			< 20% of the measured value / year			
		of the measure	measured value / year				
Humidity effect (10 to	90% RH) at 40°0	C	\pm 5% of relative sensitivity			vity	
	ax. recommended interval between calibrations 6 months						
(under normal operating conditions)							
	Calibration content			30-80% of the LEL			
Response time (can	Gas and	Methane		lydrogen	Pentane	Styrene	
vary $\pm 10\%$ from one	injected	(50 % LEL)	(50	0 % LEL)	(52% LEL)	(45% LEL)	
sensor to another)	quantity	4		2	0	10	
	t25	4 s		3 s	8 s	12 s	
	t50	8 s		6 s	12 s	40 s	
	t90	15 s		10 s	27 s	60 s	

2.1.1. Metrological Specifications

Detectors CTX 300 SC are compliant with the standard EN14624 which defines tests and methodology in order to specify performance of portable and fixed detectors.

Measuring range	2000 ppm pour R134A ou R22
Maximum sensitivity threshold	5000 ppm during 90s without sensitivity loss
Recommended Alarm Threshold	200 ppm
Minimum sensitivity threshold	10 ppm
Minimum time to detect the lowest concentration	less than 25s after injection of 500 ppm R134A
Recovery time	less than 160s after injection of 8 min of 1000 ppm R134A

2.1.2 Particular Precautions for Combustible Gas Detectors

- The sensors may be desensitized if exposed to certain poisons: silicate vapors at concentrations > 10 ppm, chlorinated or sulfated products at concentrations > 100 ppm
- A lack of oxygen (<15% O₂) or an excess of oxygen (>23% O₂) can respectively cause an under estimation or an over estimation of the actual gas measurement.
- Sensors must be placed upside down during installation.

2.1.3 Response to other explosive gases

The detector should be calibrated with the gas to be measured. If a user wishes to calibrate the detector with a different gas than the gas it was programmed for at the factory, refer to the table below, using the recommended gas and the corresponding coefficient.

Structure C_3H_6O C_2H_2 NH3 C_4H_{10} C_2H_6 C_2H_6O C_2H_4 C_6H_{14}	2.15% 1.5% 15.0% 1.5% 3.0% 3.3% 2.7% 1.2%	13.0% 100% 30.2% 8.5% 15.5% 19.0% 34.0% 7.4%	Density 2.1 0.9 0.6 2 1.04 1.6 0.98 3.0	ent 1.65 2.35 0.9 1.75 1.5 1.65	ent 1.2 1.75 0.65 1.25 1.1 1.1 1.2	nt 0.95 1.35 0.5 1.0 0.85 0.85 0.95
$\begin{array}{c} C_{2}H_{2} \\ NH_{3} \\ C_{4}H_{10} \\ C_{2}H_{6} \\ C_{2}H_{6} \\ C_{2}H_{4} \\ C_{6}H_{14} \end{array}$	1.5% 15.0% 1.5% 3.0% 3.3% 2.7%	100% 30.2% 8.5% 15.5% 19.0% 34.0%	0.9 0.6 2 1.04 1.6 0.98	2.35 0.9 1.75 1.5 1.5	1.75 0.65 1.25 1.1 1.1	1.35 0.5 1.0 0.85 0.85
$\begin{tabular}{c} NH_3 \\ C_4H_{10} \\ C_2H_6 \\ C_2H_6O \\ C_2H_4 \\ C_6H_{14} \end{tabular}$	15.0% 1.5% 3.0% 3.3% 2.7%	30.2% 8.5% 15.5% 19.0% 34.0%	0.6 2 1.04 1.6 0.98	0.9 1.75 1.5 1.5	0.65 1.25 1.1 1.1	0.5 1.0 0.85 0.85
$ \begin{array}{c} C_{4}H_{10} \\ C_{2}H_{6} \\ C_{2}H_{6}O \\ C_{2}H_{4} \\ C_{6}H_{14} \end{array} $	1.5% 3.0% 3.3% 2.7%	8.5% 15.5% 19.0% 34.0%	2 1.04 1.6 0.98	1.75 1.5 1.5	1.25 1.1 1.1	1.0 0.85 0.85
C ₂ H ₆ C ₂ H ₆ O C ₂ H ₄ C ₆ H ₁₄	3.0% 3.3% 2.7%	15.5% 19.0% 34.0%	1.04 1.6 0.98	1.5 1.5	1.1	0.85
C ₂ H ₆ O C ₂ H ₄ C ₆ H ₁₄	3.3% 2.7%	19.0% 34.0%	1.6 0.98	1.5	1.1	0.85
C ₂ H ₄ C ₆ H ₁₄	2.7%	34.0%	0.98			
C ₆ H ₁₄				1.65	1.2	0.95
	1.2%	7.4%	2.0			
			3.0	2.1	1.7	1.2
H_2	4.0%	75.6%	0.069	1.25	1.0	0.8
Prop+But	1.65%	~9.0%	1.85	1.65	1.2	0.95
CH ₄	5.0%	15.0%	0.55	1.0	0.75	0.55
CH ₄	5.0%	15.0%	0.55	1.0	0.75	0.55
C ₈ H ₁₈	1.0%	6.0%	3.9	2.7	2.0	1.5
C ₅ H ₁₂	1.4%	8.0%	2.5	2.1	1.7	1.2
C ₃ H ₈	2.0%	9.5	1.6	1.5	1.1	0.85
C ₇ H ₈	1.2%	7%	3.14	4.0	2.95	2.3
/	1.1%	~6.0%	3 to 4	1.8	1.35	1.05
	C ₈ H ₁₈ C ₅ H ₁₂ C ₃ H ₈	C_8H_{18} 1.0% C_5H_{12} 1.4% C_3H_8 2.0% C_7H_8 1.2%	C ₈ H ₁₈ 1.0% 6.0% C ₅ H ₁₂ 1.4% 8.0% C ₃ H ₈ 2.0% 9.5 C ₇ H ₈ 1.2% 7%	C_8H_{18} 1.0% 6.0% 3.9 C_5H_{12} 1.4% 8.0% 2.5 C_3H_8 2.0% 9.5 1.6 C_7H_8 1.2% 7% 3.14	C_8H_{18} 1.0%6.0%3.92.7 C_5H_{12} 1.4%8.0%2.52.1 C_3H_8 2.0%9.51.61.5 C_7H_8 1.2%7%3.144.0	C_8H_{18} 1.0%6.0%3.92.72.0 C_5H_{12} 1.4%8.0%2.52.11.7 C_3H_8 2.0%9.51.61.51.1 C_7H_8 1.2%7%3.144.02.95

Table 1: COEFFICIENTS FOR CALIBRATION

Example (first line of the table): calibrate an "Acetone" detector with a 1% volume butane test gas

Value to display: $\frac{1\% \text{ (injected butane)}}{1.5\% \text{ (LEL butane)}} \times 100 \times 0.95 \text{ (butane/acetone coefficient)} = 63\% \text{ LEL}$

Note:

- LELs vary according to the source. The LEL values reported here come from European standard EN 50054
- Coefficients are accurate to $\pm 15\%$

3 Markings:

OLDHAM **CEX** 300 **EX** 300 **EX** II 2GD IP66 U max.: 2.8V I max.: 0.4 A P max = 0.8 W For Ambient T = 60°C EEx e d IIC T6 (85°C) INERIS 01ATEX0006X WARNING ELECTROSTATIC CHARGE CLEAN OR WIPE ONLY WITH A DAMP CLOTH

The serial number is located on the sump case

VI CERTIFICATIONS

CE/ATEX126 Eng c

MANUFACTURER DECLARATION OF CONFORMITY

INDUSTRIAL		
SCIENTIFIC	SAF	ETY DEVICES NOSPHERES EXPLOSIL
	—(F-(§	
	P15P051	TIFS DE SECURITE
	tific Oldham, ZI Est 62000 Arras France, sive Atmospheres, complies with the require	
	Gas Detector CEX300	
I) <u>European Dire</u>	ctive ATEX 94/9/CE of 23/03/94: Explo	osive Atmospheres
N° of EC type examination certifi N° of the Production Quality Assu Issued by the Notified Body n°00	arance Notification of the Arras factory:	INERIS 01ATEX0006X INERIS 00ATEXQ403 INERIS, 60550 Verneuil, France.
<u>Rules of construction</u>:	EN50014, EN50018, EN50019, EN5028	1-1-1
	Ex II 2 GD / EEx e d IIC T6 (T85°C)T	amb +60°C IP66
Note: the equipment is not impacted by th	e substantial modifications of the applicable harmonized	l standards series EN 60079-0, -1 and -7
Performance Standards:	EN 50054, EN 50057 (reference gas methane – standard sensor	C1000)
- CEX300, when connected to	control unit MX15: system of category) II 3 G
- CEX300, when connected to	control units MX32, MX42A, MX48, MX52	2: system of category II 2 G
Functional Safety Standard:	EN 50402	
- CEX300 presents an arch	itecture in conformity with the standard accord	rding to following levels:
	bability 1, with a period of maintenance no m bability 2, with a period of maintenance no m	
II) The European Directi	ve EMC 89/336/CEE of 3/05/89: Elec	tromagnetic compatibility
European Standard:	EN 50270	
	Functional Safety: Reliability Data	
The reliability analysis, based on	INERIS report nº CGR 74448 of 06 July 200	6 has determined:
Annual failure rate o	of detectors CEX300 for combustible gas: λ_d	$_{\rm u}$ annual = 4.42 10 ⁻²
Note: The calculated failure rate is only va ageing of the measuring cells, the rate is n an effective Safety Failure Fraction (SFF)	alid on the real lifetime of the sensitive elements (limited ot significant any more. The Standard EN50402 assume between 60% and 90%.	l time, about 3 to 5 years). Beyond that, due to s for the simple modules like detector CEX300,
Arras, 20/10/09 AT	EX Authorized Representative	Lionel Witrant
Industrial Scientific Old	ham	
Z.I. EST - B.P. 20417 62027 ARRAS Cedex - FRAN		William
Tel +33 3 21 60 80 80 ISO 9001 Fax +33 3 21 60 80 00		Engineering Director

DUSTRIAL	DECLARATION DE CONFORMITE CONSTRUCT Manufacturer Declaration of Conformity
	(
La Société Industrial Scienti matériels neufs désignés ci-aprè	ific Oldham, ZI Est 62000 Arras France, atteste que les ès:
(The Company Industrial Scient following new material:)	entific Oldham, ZI Est 62000 Arras France, declares that the
Détecte	eurs de gaz (<i>Gas detectors</i>) type
<u>COX300</u>	<u>- CSC300 - CTX300 - CTX300 IR</u>
sont conformes aux exigences de	le la
D'andia Fama (ana CEM	1 90/22//CEE 1 2/05/90 · C
	M 89/336/CEE du 3/05/89 : Compatibilité Electromagnétique 9/336/CEE of 3/05/89 : ELECTROMAGNETIC COMPATIBILIT
Normes harmonisées appliqué	ées : EN 50270
(Harmonised applied Stand	
Arras, le 23/11/07	Lionel Witrant
Industrial Scientific Oldhan	m William
Z.I. EST - B.P. 417 62027 ARRAS Cedex – FRAN(Tel. +33 3 21 60 80 80	
	Directeur Technique

CE/CM104 ind b

Directeur Technique Engineering Director

DECLARATION DE CONFORMITE CONSTRUCTEUR

La **Société Industrial Scientific Oldham SAS**, ZI Est, 62000 Arras France, atteste que les matériels neufs destinés à la détection de fluides frigorigènes halogénés désignés ci-après,

6-

Détecteurs OLCT10 & CTX300

sont conformes aux normes Française et Européenne NF EN 14624 :

Performances des détecteurs de fuite mobiles et des contrôleurs d'ambiance de fluide frigorigènes halogénés.

Données techniques

<u>Note 1</u> : pour plus de renseignements sur le mode d'installation, le mode opératoire et les précautions d'emploi, se reporter à la notice d'utilisation du Constructeur.

<u>Note 2</u> : pour les obligations réglementaires, se référer au Décret du 7 mai 2007 relatif au contrôle d'étanchéité des éléments assurant le confinement des fluides frigorigènes utilisés dans les équipements frigorifiques et climatiques.

Arras, le 19/03/09

Industrial Scientific Oldham S.A.S. Z.I. EST - B.P. 20417 62027 ARRAS Cedex – FRANCE Tel +33 3 21 60 80 80 Fax +33 3 21 60 80 00 **Michel Spellemaeker**

Responsable Produits Fixes

Fixed Products Director

ANNEXES

ANNEX 1: GENERAL WIRING SPECIFICATIONS

ANNEX 2: INSTRUCTIONS FOR CALIBRTING THE CTX 300 SEMICONDUCTOR

ANNEX 3: VIEW OF THE CTX 300

ANNEX 1

WIRING SPECIFICATION

SUBJECT

This specification defines the general principles that apply to the design and manufacture of grounding devices for INDUSTRIAL SCIENTIFIC instrumentation.

REFERENCE DOCUMENTS

The electrical installation shall comply with French regulations in force, with all European directives, all AFNOR standards and codes in force, insofar as they apply, as well as the client's general and particular specifications.

- NFC 15-100 Requirements for Low Voltage electrical installations
- NFC 17-100 Protection against lightning Installation of lightning rods
- EMC Electromagnetic compatibility Directive 89/336/EEC

APPLICABLE REGULATIONS

- Decree No. 88-10546 of 11/14/88 (worker protection)
- Edict of 12/19/88 (conditions for equipment installation in places presenting a risk of explosion)
- Decree No. 78-779 of 07/17/78 modified by Decree No. 81-440 of 05/05/81 amended on 07/01/91
- Edict of 04/06/81 and 09/07/82
- Edict of 03/31/80 (regulations for electrical installations in facilities regulated as part of the legislation on classed installations likely to present a potential risk of explosion.)

GENERAL DESIGN

See all attachments, as well as the particular specifications below

Raceways:

Metal raceways are grounded using "Force" metal masses; cross-sectional area of the grounded network is 10 mm².

Junction boxes:

If polyester junction boxes are used, they must be equipped with:

- a tapped metal plate so as to interconnect the mass of the metal cable glands;
- an external ground connection of 4 mm².

The connection to the metal masses grounding network is made with a bare galvanized steel conductor.

The loop resistance for the central controller/sensor cable connection will vary according to the type of sensor and type of central controller being used.

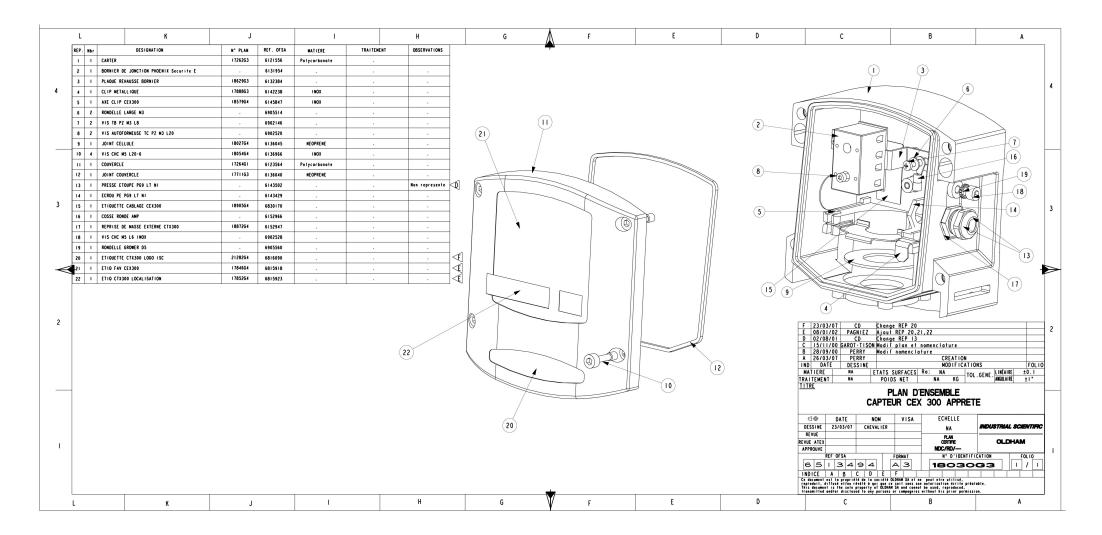
Refer to the technical manuals appropriate for your use.

ACCEPTABLE CABLE TYPES SUBJECT TO ADHERENCE TO THE RECOMMENDATIONS OF THIS SPECIFICATI Examples (yellow/green not included) Non-exhaustive list.

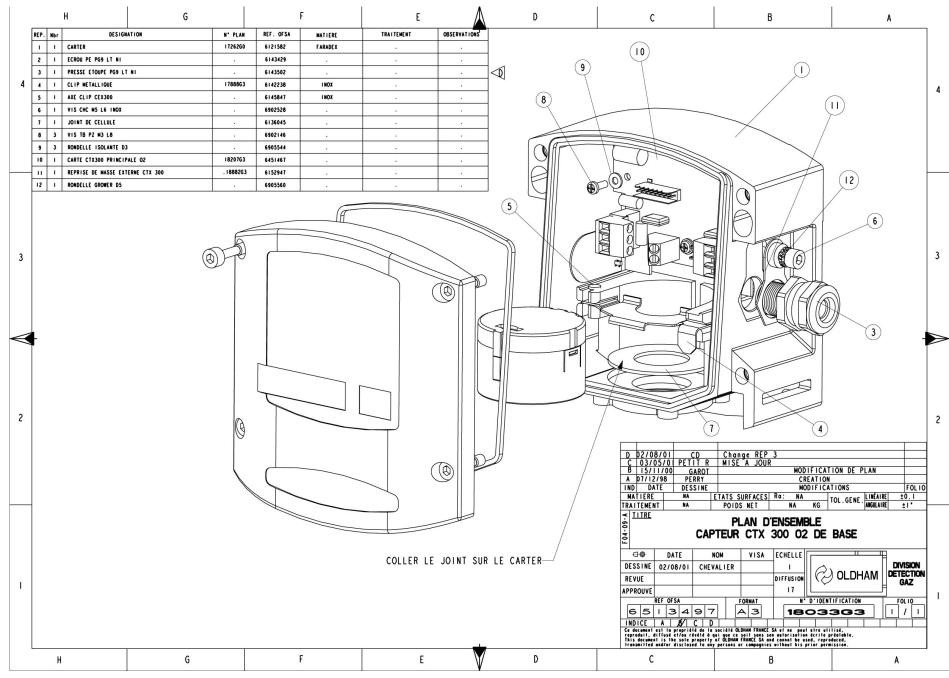
Non-ATEX Zone	CNOMO FRN05 VC4V5-F
ATEX Zone	GEUELYON (U 1000RHC1)
ATEX Zone	GVCSTV RH (U 1000)
ATEX Zone	xx-xx-09/15- EG-SF (U 300 compatible M87202) EG-FA EG-PF

Non-ATEX Zone LYCY

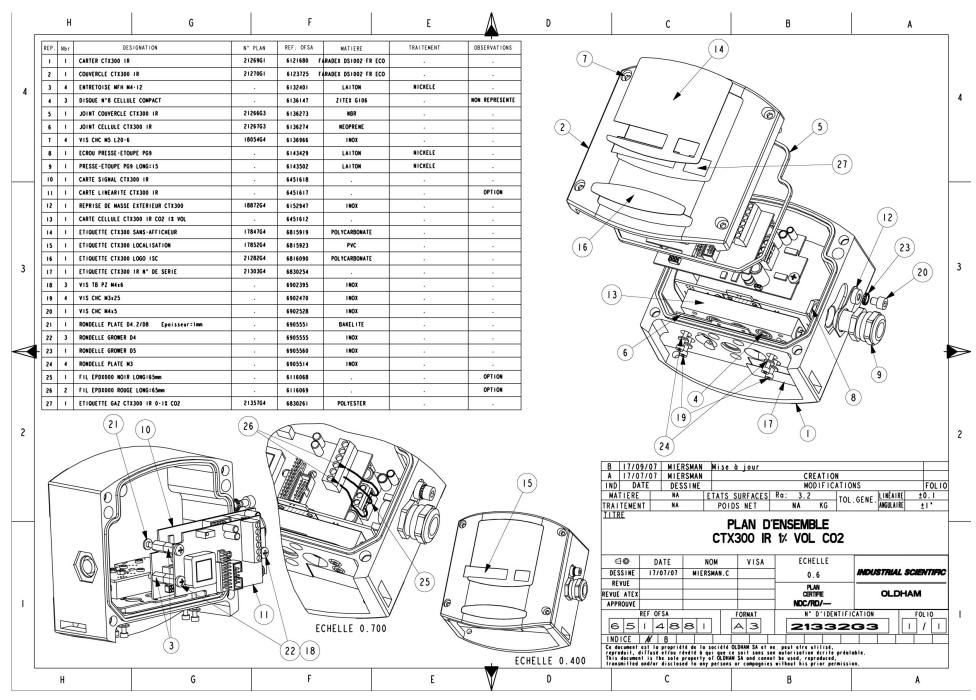
Γ.

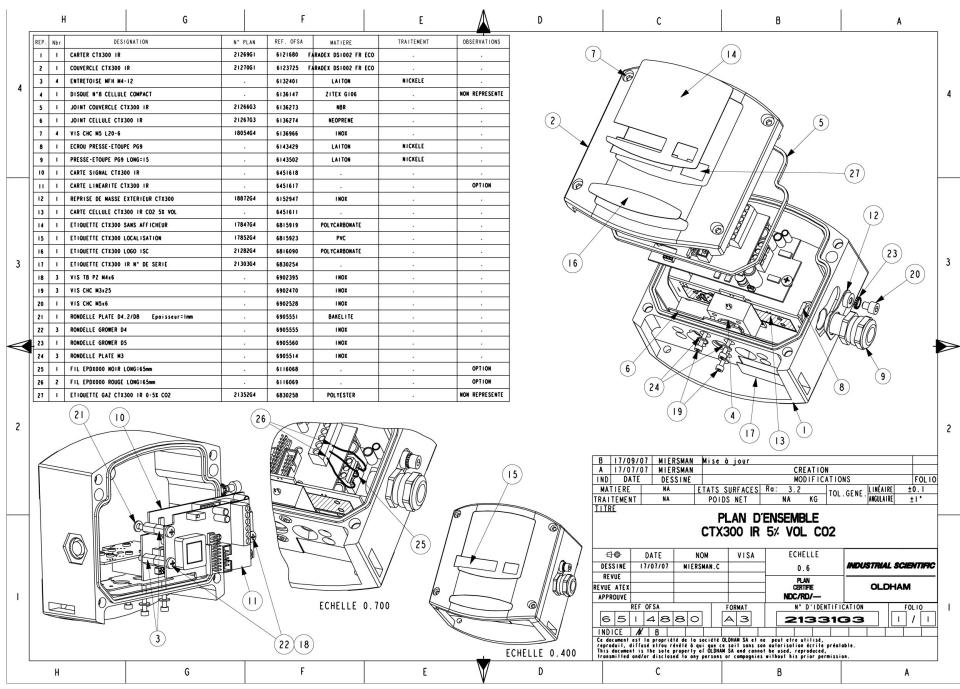

* THE CABLES LISTED BELOW WERE NOT INCLUDED IN THE ELECTROMAGNETIC COMPATABILITY TESTS FOR OUR PRODUCTS. USE AT YOUR OWN RISK.

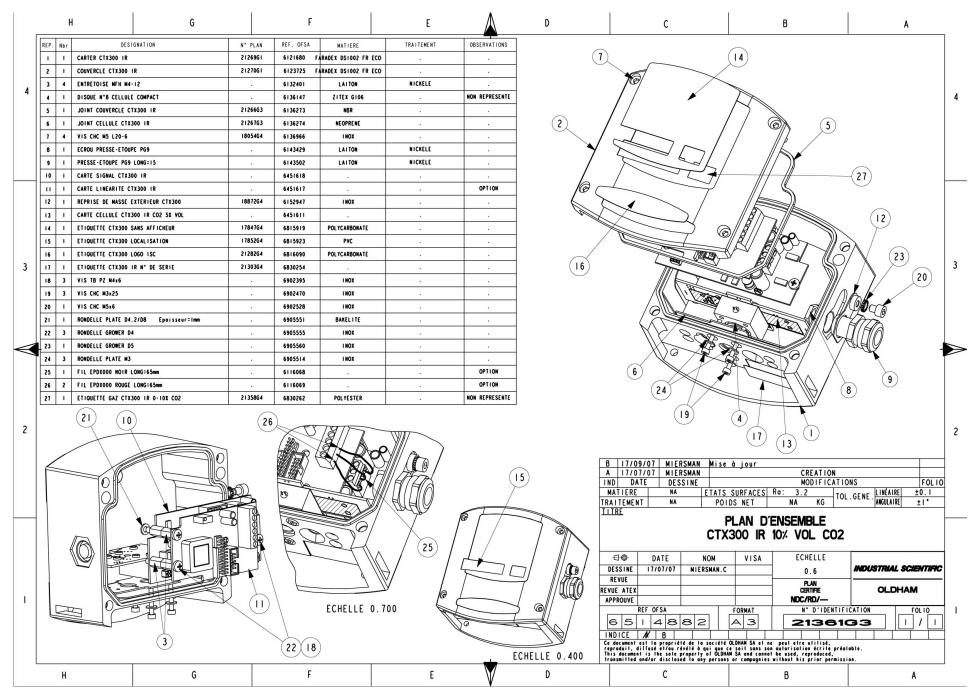
ANNEX 2

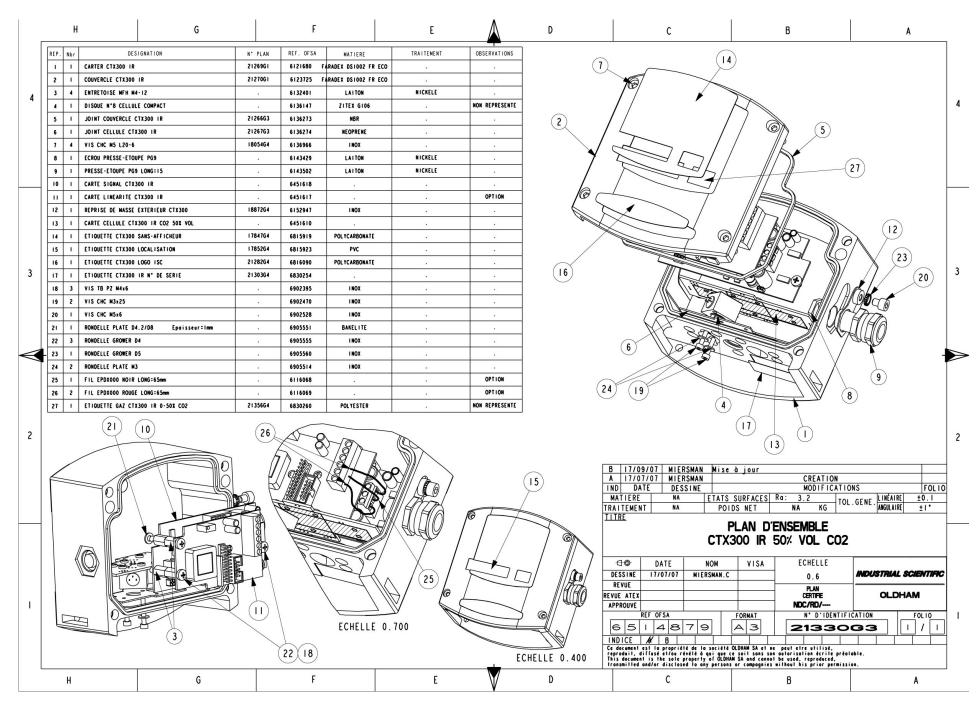

CTX 300 SEMI CONDUCTEUR

Sensor type and reference number	Gas types	Measurement Ranges	SAV test gas	Control gas
6313545	Methane CH ₄	100% LEL	20% LEL – 1 % CH4	
	Hydrogen H ₂ Butane C ₄ H ₁₀	100% LEL 100% LEL	20% LEL - 0.8 %H ₂	
	Propane C ₃ H ₈	100% LEL	$20\% \; LEL - 0.37 \% C4H_{10}$	2,000 ppm H ₂ =190ppm+-25ppm
	Methyl Chloride CH ₃ Cl	500 ppm	$20\ \%\ LIE - 0.4 \qquad \% C_3 H_8$	100 ppm CO=80ppm-+15ppm
	Chlorure de méthylène CH ₂ Cl ₂	500 ppm	50 ppm LEL CH ₃ Cl	
6313546	Trichloroethylene C ₂ HCl ₃ Toluene C ₆ H ₅ CH ₃ Xylene C ₆ H ₄ (CH ₃)2 Ethanol C ₂ H ₅ OH	500 ppm 2,000 ppm 2,000 ppm 5,000 ppm	75 ppm Trichloroethylene 100 ppm Toluene 100 ppm Xylene 1,000 ppm Ethanol	300 ppm CO=120 ppm+-35ppm 300 ppm CO=330ppm+-50ppm 300 ppm CO=330ppm+-50ppm 1,000ppm H ₂ =880ppm+-150ppm
6313547	Freon R12 Freon R22	1 % volume 2,000 ppm	1,000 ppm R12 1,000 ppm R22	0.5%CH4=out of range 0.5%CH4=750ppm+-200ppm
6313544	Freon R134A Freon R141	2,000 ppm 2,000 ppm	1,000 ppm R134A 1,000 ppm R22=500ppm	0.5%CH ₄ =2000ppm+-500ppm
	Freon R142B Freon R11	2,000 ppm 1% volume	1,000 ppm R22=600ppm 1,000 ppm R11	0.5%CH4=250ppm+-70ppm
	Freon R23	1% volume	1,000 ppm R134A=1,100ppm	0.5%CH4=150ppm+-50ppm






			-													1
	-			J		1		н	G	F		E	D	С	В	A
					MATIERE	TRAITEMENT	OBSERVATIONS			-				\bigcirc	~	
													5	(4)	18	
	2 1	COUVERCLE CTX300 AFFICHEUR	18324G3	6323609									\sim			
	3 1	CARTE AFFICHEUR	1819763	6451466									6		$\rightarrow \downarrow (1)$	
		GUIDE CIMP AFFICHEUR CTX300	18347G4	6332453												3
	5 1	AXE CEX 870	÷ .	6124855							\frown		alt			
	6 1	CERCLAN DIAN 5		6136980		4					3					(16)
	7 1	ENTRETOISE NER 3-6,5-32-PA66		6132379												
	8 1	ETIQUETTE LOGO OLDHAN	1784564	6815917							\		FIL			
1 Image: State in the st	9 1	FACE AVANT AFFICHEUR	1784964	6815921							\~					
1 Image: State in the st	10 1	ETIQUETTE LOCALISATION	1785264	6815923	2						1000	ABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB		00		\frown
1 Image: State in the st	- 11 1	ETIQUETTE SERIE	17854G4	6830101							Kan	Hour Hour Hour and a series		6-8-3	UNE / /	(15)
3 Image: State in the st													SI III .			/~
3 1 1 1 1 1 1 1 1 1											(C 5				TAL	
3 1 1 1 1 1 1 1 1 1 1 1 1 1				6143442				A		\sim	0	. 6 8 9 1				
3							_	19			1					
2 2 4 4 4 4 4 4 4 4 4 4 4 4 4							-				The second	20020aa	リン Ш 🗸			
2 2 4 4 4 4 4 4 4 4 4 4 4 4 4							-			$ \overline{a}$ \overline{a}	AN .	CONTRACTOR OF THE OF TH	>	FIL VM		
2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5							-				8) =	V OF	∽ ∭ ⊁			
Image: Second														A 17/06/99 PERRY IND DATE DESSINE MATIERE NA TRAITEMENT	N MODIFICATION PLAN ET N CREATION MODIFICATI TATS SURFACESI Ro: NA POIDS NET NA KG	ONS FOLIO
	1							(9)	0			s vis M3 et de face avant 9	s rondelles	CTX 30 Image: Stress of the stres of the stress of the stress of the stress of the	ON VISA ECHELLE RRY I piffusion 17 M N* D'IDENTIF 13 18032	
	1	к		J		Ĩ		н	G	V c		F	D			A



		H G	F		E		D	с	В	A
R	EP. Nb	DESIGNATION	Nº PLAN	REF. OFSA	MATIERE	TRAITEMENT	OBSERVATIONS			
	1 1	I CARTER CTX300 FARADEX	18930G0	6121582	FARADEX			1		
	2 1	I CARTE PRINCIPALE CSC50	1 328DG4	6451396				1		
4	3 1	I PRESSE ETOUPE PG9 LT NI		6143502						
	4 1	I REPRISE DE MASSE EXTERNE		6152947	÷	~		1		4
	5 1	ECROU PE PG9		6143429	LT NI			1		
	6 1	ECROU CELLULE	18531G4	6323612	PVC noir			1		
	7 1	I ENTRETOISE CIMP	18532G4	6332456	PVC noir			1		
	8 1	I RONDELLE A DENT D3		6905511				1		
	9 1	I VIS TB PZ M3 LIO		6902151				1		
	10 1	I JOINT COUVERCLE		6136040		•		1		
	п	I COUVERCLE CTX300 FARADEX	18931G1	6123576	FARADEX		2	1		
	12 4	4 VIS CHC M5 L20-6		6136966	INOX			1		
	13 1	I RONDELLE GROWER D5	•	6905560				1		
	14 1	I VIS CHC M5 L6 IN		6902528	•			1		3
2					Co	oller ENTRETOISE arter avec colle		A 13/09/99 PERRY IND DATE DESSINE MATIERE NA ETATS TRAITEMENT NA POI TITIRE	PLAN D'ENSEMBLE	DNS FOLIO GENE. LINËAIRE ±0.1 ANGULAIRE ±1*
		6						A 13/09/99 PERRY IND DATE DESSINE MATIERE NA ETATS TRAITEMENT NA POI TITIRE	CREATION MODIFICATIO SURFACES Ra: NA IDS NET NA KG TOL PLAN D'ENSEMBLE 300 SEMI CONDUCTEU	DNS FOLIO GENE. LINÉAIRE ±0.1 ANGULAIRE ±1.*
				3 Mile				REVUE	DIFFUSION	DLDHAM
1	Col	lier ECROU CELLULE sur le carter avec colle 401					D		DIFFUSION 17 FORMAT N° D'IDENTIF A 3 184-97	

Garanty

1 Plus Points

To respond quickly and efficiently to your consultancy needs or order tracking throughout the world via our customer service department.

To respond as rapidly as possible to all questions of a technical nature.

2 Quality

To assure you of the best quality of our products and service in conformity with the international standards and directives in force.

3 Inspection and Reliability

To provide you with reliable equipment. The quality of our production is an essential condition for this reliability. This is guaranteed by virtue of very strict checks that are carried out when raw materials come in, both during the course of and at the end of manufacture (all equipment that is sent out is configured to your individual requirements).

4 Commissioning

If required, to commission your equipment by our Ism-ATEX qualified specialists.

5 Training

To provide detailed training programs.

6 Project department

Our team will investigate all gas and flame detection projects via on-site investigations or from drawings. We can suggest pre-project studies, design, installation and maintenance of safety systems in ATEX or non-ATEX zones with full respect of all standards in force.

7 Maintenance contract

To suggest rolling maintenance contracts tailored to your needs in order to guarantee you maximum safety:

- One or more annual visits, including consumables
- Renewable by agreement
- Including adjustment of fixed or portable gas detectors, and inspection of control systems.

On-site repair

8

To rapidly send our Service Technicians to you. This is possible on account of our hubs in France and abroad.

9 Factory repair

To deal with any problem that cannot be resolved on-site by dispatching the equipment back to the factory. Teams of technicians will work on repairing your equipment as quickly as possible, thereby reducing the time spent out of commission to a minimum. Cost efficient replacement solutions are available if equipment is deemed not repairable. For all After Sales Service in France, contact us by email at servicecenter@oldhamgas.com

Or by telephone at + 33 (0)3 21 60 80 80. For locations near you, please visit us at indsci.com and click on the Oldham Division.

OUR MISSION

Preserving human life on, above and below the earth Delivering highest quality, best customer service... every transaction, every time.

The Fixed Gas Detection People

EUROPEAN PLANT AND OFFICES Z.I. Est - rue Orfila B.P. 20417 - 62027 ARRAS Cedex FRANCE Tél.: 33 3 21 60 80 80 - Fax: 33 3 21 60 80 00 Web site : http://www.oldhamgas.com

AMERICAS Tel. : +1 412 788 4353 Fax : +1 412 788 8353 info@indsci.com **ASIA PACIFIC** Tel. : +65-6561-7377 Fax : +65-6561-7787 sales@isc-cn.com

EUROPE Tel. : +33 3 21 60 80 80 Fax : +33 3 21 60 80 00 info@oldhamgas.com