1600 Gas Controller

User's Manual

Version 3.2 September 1, 2006

Industrial Scientific Corporation

1	INT	RODUCTION	.1
	1.1	GENERAL OPERATION	. 1
	1.1.1	l Power Up	. 1
	1.1.2	2 Viewing Sensors	. 2
	1.1.3	3 Acknowledging Alarms	. 2
2	INS'	TALLATION	.4
	2.1	ENABLING POWER	. 6
	2.2	SERIAL CONNECTIONS – FLUSH/PANEL MOUNT	. 6
	2.3	SERIAL CONNECTIONS – NEMA ENCLOSURE	. 6
	2.4	CONFIGURING THE SERIAL PORTS	.7
3	QUI	ICK SETUP	.8
	3.1	SENSOR DEFAULTS	. 8
	3.2	SYSTEMS WITH ONLY 1 RELAY	.9
	3.3	Systems with 3 relays – Fault, Low and High	10
	3.4	SYSTEMS WITH INDEPENDENT RELAYS PER SENSOR	11
4	PRC	OGRAMMING	12
	4.1	How to Read the Menus	12
	4.2	How to use the Keypad	13
	4.3	How to Enter Text for Names	14
	4.4	PROGRAMMING SYSTEM SETTINGS	15
	4.5	PROGRAMMING SYSTEM FAULT CHANNELS	18
	4.6	PROGRAMMING RELAY CHANNELS	20
	4.7	DISCOVERING SENSOR CHANNELS	21
_	4.8	PROGRAMMING SENSOR CHANNELS	23
5	RUN	N MODE FUNCTIONS	27
6	GEI	ITING SYSTEM STATUS	28
	6.1	SENSOR STATUS	28
	6.2	RELAY STATUS	29
_	6.3	FAULT STATUS	30
7	VEF	RIFYING COMMUNICATION	31
8	ACH	KNOWLEDGING ALARMS	31
9		VIING AND DISAKMING	52 22
1() MO	DBUS SLAVE	52
11		NG DIAGNUSTICS ON POKT 2	53
12	2 KE'I	I KIEVING THE EVENT LOG	54
	12.1	TO VIEW THE EVENT LOG LOCALLY	34 24
1:	5 IND	EX	56

1 Introduction

The 1600 Gas Controller monitors up to 16 gas sensors via the Modbus RTU protocol over an RS-485 serial communication link.

Included in the 1600 are:

- Support for 16 Modbus gas sensors
- 1 physical relay rated at .5A @125VAC
- Support for 16 Modbus relays
- Modbus Slave support via an RS-232 connection
- Automatic 'discover' feature to detect all sensors and setup the 1600
- Optional 24VDC supply to power gas sensors

The physical relay by default is used:

- as a local alarm indicating loss of communication with any of the sensors,
- when any of the sensors goes into a fault condition, and
- when any sensors exceeds a low or high alarm limit.

The user can select any of the available sensors, physical or Modbus-addressable, to be used for any of these conditions.

1.1 General Operation

The 1600 has 2 modes of operation - PROGRAM and RUN.

- During PROGRAM mode the user can change how the 1600 operates.
- During RUN mode the 1600 is monitoring sensors and controlling relays as specified.

The 1600 monitors up to 16 sensors continuously. When any one of the sensors readings changes from the normal condition to the alarm condition, the 1600 turns on the specified relay. There are a total of 16 Modbus-addressable relays that can be configured.

1.1.1 Power Up

On power up, the 1600 does the following:

- Starts in the bootloader looking for a valid application
- Starts the application
- Enters RUN mode if an Access Code is set
- Enters PROGram mode if an Access Code is not set
 - o Switches to RUN mode 30 minutes after no activity

1.1.2 Viewing Sensors

Automatic scrolling of all sensor channels starts 60 seconds after the display is returned to the main RUN mode screen. During scrolling, a user can use the NEXT/PREV keys to temporarily stop the scrolling and select a channel for viewing.

1.1.3 Acknowledging Alarms

Alarms are acknowledged by pressing the ACK' key on the keypad while in RUN mode.

Figure 1 RUN Mode screens

2 Installation

The 1600 comes in 2 physical configurations, a metal enclosure that can be flush or panel mounted and a NEMA 4X enclosure with a clear door.

The 1600 can be mounted to a panel or it can be flush mounted to a door. The brackets on the either side of the 1600 can be removed and turned around for panel mounting.

Figure 2 NEMA 4X enclosure mounting

Figure 3 Panel Mount mounting holes

Figure 4 Flush Mount cut-out dimensions

2.1 Enabling power

For the flush/panel mount configuration, plug in the provided 12VDC power supply to the power connector on the 1600.

The power switch is on the left-hand side just to the right of the power connection.

For the NEMA 4X configuration, connect either 120VAC or 220VAC to the terminal block on the bottom panel.

The power switch is on the inside door on the right-hand side of the circuit board, just to the left of the power connection.

2.2 Serial connections – flush/panel mount

The 1600 has two serial cables, Port 1 is a 9-pin connector located on the far right-hand side which is usually used as the Modbus Master port to communicate with sensors.

The RS232-to-RS485 converter should be connected either directly or through a straightthrough cable to the 9-pin connector. You must provide 12VDC and ground connections to the converter as labeled.

On the RS-485 converter:

Connect the wire leading from the A connections in all sensors to the B terminal. Connect the wire leading from the B connections in all sensors to the A terminal. **NOTE:** RD(A) and TD(A) are jumpered and RD(B) and TD(B) are jumpered.

Port 2 is an RS-232 cable used for diagnostics (debug) or as a Modbus Slave port.

XMT - pin 2, RCV - pin 3

2.3 Serial connections – NEMA enclosure

Port 1, the RS-485 port to communicate with sensors, is mounted on the bottom panel inside the enclosure.

Connect the wire leading from the A connections in all sensors to the B terminal. Connect the wire leading from the B connections in all sensors to the A terminal. **NOTE:** RD(A) and TD(A) are jumpered and RD(B) and TD(B) are jumpered.

Port 2 is an RS-232 cable used for diagnostics (debug) or as a Modbus Slave port.

2.4 Configuring the serial ports

The serial ports are configured from the System Setup (3) function when in the Programming mode.

Mode	0 – None, 1 - Debug, 2 – Slave, 3 – Master Comm 1 default = Master Comm 2 default = Slave		
Baud Rate	0 - 1200 1 - 2400 2 - 4800 3 - 9600 4 - 14400	5 - 19200 6 - 28800 7 - 38400 8 - 57600 9 - 115200	
Parity	0 – None , 1 – Odd, 2 - Even		
Data Bits	7 or 8		
Stop Bits	1 or 2		
Max Idle	5 - 4000 character times (default = 50)		
Response Timeout	20 – 6000 msecs (default = 850)		
Scan Rate	1 - 60 seconds (default = 1)		
Block Requests	0 - off, 1 - on		

Serial Port Defaults

- Port 1: MASTER, 9600 baud, 8, 1, NONE
- Port 2: SLAVE, ID=126, 9600 baud, 8, 1, NONE

3 Quick Setup

Setting up the 1600 from the factory defaults is very simple. The serial port default settings match the ISC sensor settings, once the RS-485 physical connection is made, the 1600 can automatically find all connected sensors.

Default Name	Decimal Position	Low Limit	High Limit	Units	Alarm Mode
СО	1	35.0	70.0	ppm	Above a Limit
H2S	1	10.0	20.0	ppm	Above a Limit
NO	1	25.0	50.0	ppm	Above a Limit
NH3	2	22.00	50.00	ppm	Above a Limit
NO2	1	1.0	2.0	ppm	Above a Limit
SO2	2	2.00	4.00	ppm	Above a Limit
CL2	1	0.5	1.0	ppm	Above a Limit
HCN	2	5.00	10.00	ppm	Above a Limit
HCL	2	5.00	10.00	ppm	Above a Limit
PH3	2	0.30	0.60	ppm	Above a Limit
CL02	2	0.30	0.50	ppm	Above a Limit
O2	2	19.50	23.50	%vol	Outside a Range
H2	1	50.0	100.0	ppm	Outside a Range
CH4	0	10	20	%lel	Above a Limit
LEL	0	10	20	%lel	Above a Limit
IR LEL	0	10	20	%lel	Above a Limit
CO/H2	1	35.0	70.0	ppm	Above a Limit
ETO	2	0.50	1.00	ppm	Above a Limit
O3	2	0.10	0.20	ppm	Above a Limit
CO2	2	0.50	1.00	ppm	Above a Limit

3.1 Sensor Defaults

3.2 Systems with only 1 relay

	Function being performed	What you do
Step 1	Create network of sensors and 1600.	Connect RS-485 from 1600 to each sensor. A to A and B to B.
Step 2	Find all sensors and setup all sensor channels.	PROG > DISCOVER (wait for it to complete)
Step 3	Verify all sensors were found correctly. NOTE: At this point, each sensor has a Low alarm relay set to Relay1 and a High alarm relay set to Relay 1.	STATUS > NEXT Loop through all channels.

3.3 Systems with 3 relays – Fault, Low and High

	Function b	eing perforn	ned	What you do
Step 1	Create network of sensors and 1600.			Connect RS-485 from 1600 to each sensor. A to B and B to A.
Step 2 Find all sensors and setup all sensor channels.			PROG > DISCOVER (wait for it to complete)	
Step 3	Step 3 Verify all sensors were found correctly.			STATUS > NEXT
	NOTE: At this point, each sensor has a Low alarm relay set to Relay1 and a High alarm relay set to Relay 1.			Loop through all channels.
Step 4	Step 4 Setup relays by knowing the Modbus ID and Register # of the relays being used.		PROG > RELAYS	
	Relay #	Modbus ID	Register #	
Step 5	For all sense and the Higl	ors, set the Low n relay to 3.	relay to 2	PROG > RELAYS > NEXT
	1			

3.4 Systems with independent relays per sensor

	Function b	eing perforn	ned	What you do
Step 1	Create network of sensors and 1600.		Connect RS-485 from 1600 to each sensor. A to B and B to A.	
Step 2	Find all sensors and setup all sensor channels.			PROG > DISCOVER (wait for it to complete)
Step 3	Verify all set	nsors were fou	nd correctly.	STATUS > NEXT
	NOTE: At this point, each sensor has a Low alarm relay set to Relay1 and a High alarm relay set to Relay 1.			Loop through all channels.
Step 4	Setup relays by knowing the Modbus ID and Register # of the relays being used. For example,			PROG > RELAYS enter relay numbers
	Relay # 2 3 4 5	Modbus ID 21 22 120 120 	Register # 401 401 750 760	
Step 5	Set the Low and High relays for each sensor as desired. For example, Sensor # Low High Relay Relay 1 2 3 2 4 5		PROG > SENSORS set each low and high relay	
	3	6	7	
	·			1

4 Programming

The 1600 is programmed from the front panel by pressing the keypad to access the various portions of the system. For the most basic application, you can simply program DISCOVER sensors and view the readings from those sensors.

In more complex applications, you can program individual channels to control different relays based on high and/or low limits.

When programming, all prompts are displayed. You can enter a value or press the # key to keep the current value and move to the next option.

NOTE: When you have finished programming, return the 1600 to the RUN mode by pressing the 1 key. If the 1600 is not in RUN mode, it will not perform any alarm operations.

If you forget to return the 1600 to RUN mode, it will automatically return to RUN mode after 30 minutes.

4.1 How to Read the Menus

4.2 How to use the Keypad

The 1600 keypad is designed to make programming easy. At the bottom of the front panel is a legend to assist in programming the most common functions.

Key	Function in PROGRAM mode
1	Toggles the unit between PROGRAM and RUN mode.
3	Enter SYSTEM wide parameters
4	Program System channels for FAULT detection
7	Program RELAY channels
8	DISCOVER all sensors and automatically program channels
9	Enter individual SENSOR parameters
0	View STATUS of each sensor
<blank></blank>	To toggle between Upper and Lower case for text entry
**	To toggle between Positive (+) and Negative (-) for numbers
ENTER	Enter or keep the current setting or Exit view screens
PREV	Go to the PREVious selection
NEXT	Go to the NEXT selection
HOME	Go to the top of the PROGRAM mode menu

4.3 How to Enter Text for Names

The DiaLog Scout allows the user to enter names for the Site (Unit) and for each channel. Entering names is very similar to entering names on most cell-phones that are used today.

On the bottom of each key, there are letters and numbers. To select a specific letter or number, press that key the designated number of times. For example, to enter the letter 'L', press the 5 key 3 times.

Kev to		Number of	times to pres	ss the key	
Press	1	2	3	4	5
1	space	1			+
2	А	В	С	2	
3	D	Е	F	3	,
4	G	Н	Ι	4	-
5	J	K	L	5	*
6	М	N	0	6	#
7	Р	R	S	7	/
8	Т	U	V	8	_
9	W	Х	Y	9	
0	Q	Z	0	0	@
*	Erases				
	previous				
	letter				

4.4 Programming System Settings

System settings are generally programmed once during the initial setup of the 1600.

	What you do:	What the display shows:
Step 1	Press the 1 key to enter PROGRAM mode. You can now enter options 0 – 9.	Program Mode [0-9]=
Step 2	Press 3 Enter Access Code if requested.	NOTE: If an Access Code has been programmed, the 1600 will show a screen to enter it.
Step 3	A 20 character name that is displayed on the screen. To enter the name, press the key that corresponds to the letter or number that you want.	Site Name nnnnnnnnnnnnnnn
Step 4	The Access Code is displayed. Press # if OK or enter a new 4-digit Access Code.	Access Code nnnn
	NOTE: If an Access Code is entered, then on power up, the 1600 starts in RUN mode instead of PROGram mode.	
Step 5	Scan Rate defines how often the 1600 reads all sensors. Press # if OK or enter a new value as nn (<i>e.g. 03 for 3</i>)	Scan Rate 1-60 secs = 1
Step 6	The 1600 communication can be more efficient if data is requested in blocks instead of a each register one at a time. For example, if the 1600 is reading registers 100, 103 and 120 it can read all these values in a single block	Block Mode 0-1 = 1 (on)
Step 7	Communication port setup. 1 for Comm1 - DB9, RS-232 port 2 for Comm2 - header	Comm Setup 1-2 = 1

	What you do:	What the display shows:
If not cha	nging Comm port settings, skip to St	ep 15
Step 8	0 – none (port not used) 1 – debug (programming) 2 – Modbus RTU Slave 3 – Modbus RTU Master	CommX Mode 0-3 = 0 (none)
Step 9	Set the baud rate for the serial port. 0 = 1200 to $9 = 115200$.	CommX Baud Rate 0-9 = 3 (9600)
Step 10	Set the parity $0 - \text{none}, 1 - \text{odd}, 2 - \text{even}$	CommX Parity 0-2 = 0 (none)
Step 11	Set the data bits 7 or 8	CommX Data Bits 7-8 = 8
Step 12	Set the stop bits 1 or 2	CommX Stop Bits 1-2 = 1
Step 13	The number of characters the 1600 waits between characters being received.	CommX Max Idle 5-4000 chars = 20
Step 14	Response Timeout is the maximum time the 1600 waits for a response from the sensors after a request is sent.	CommX Resp Timeout 20-6000 = 850
Step 15	To set the Date and Time, press 1. Otherwise, press # or NEXT.	Set Date/Time 1-set =
Step 16	Set the time and date as needed. Press the # key if the value is correct already. NOTE: <i>The 1600 uses a 24-hour clock.</i>	Set Hour 00:11:22
		Set Month 11/22/06

	What you do:	What the display shows:
Step 17	Reset Config back to the factory default values. Press 0 or # to keep your programming or 1 to reset back to the factory defaults.	Reset Config 1-rst =
	NOTE: Press 9 to store or retrieve a configuration. The 1600 has a separate area that is protected by a separate access code that allows the user to save or restore a configuration.	Enter Access Code Backup=1 Restore=2 05/15/06 09:22:04
Step 18	Reset Events log erases the Log. Press 0 or # to keep the log or 1 to erase.	Reset Events 1-rst =

4.5 Programming System Fault Channels

This section allows you to configure how a System Fault is detected and what action is taken when a fault is detected.

There are 2 System Fault channels:

- Communication channel indicates loss of communication with 1 or more sensors or relays
- Sensor Fault channel indicates a sensor has a fault condition

If either of these system fault channels goes into alarm, then relay channel 1 is activated. Relay channel 1 is the physical relay on the 1600 board.

	What you do:	What the display shows:
Step 1	Press the 1 key to enter PROGRAM mode. You can now enter options $0 - 9$.	Program Mode [0-9]=
Step 2	Press 4 Enter Access Code if requested.	NOTE: If an Access Code has been programmed, the 1600 will show a screen to enter it.
Step 3	Enter 1 for the Communication channel or 2 for the Sensor Fault channel	Enter System Chan 1-2 =
Step 4	Enter the Alarm Mode 1 – Status Only – monitor only, do not generate alarms 2 – Outside a Range – generate alarms and control relays	Comm Alm Mode 1-2=2 OutsideRange
Step 5	The Alarm Delay specifies the number of seconds there must be no communication to a device until the alarm is generated.	Comm Alm Delay 0-65535 secs = 10
Step 6	The Re-Alarm Delay specifies the number of minutes the channel will automatically go back into alarm if the alarm was acknowledged AND the alarm condition still exists.	Comm Re-Alm Mode 1-1440 mins = 60

	What you do:	What the display shows:
Step 7	Specify which Relay to turn on when the channel goes into alarm.	Comm Alm Relay Relay 1-17 = 1
Step 8	Alarm State specifies the state of the relay when in the alarm condition. 1 = turn relay on when in alarm 2 - none (nothing is done with the relay)	Comm Alm State 1-2 = 1 On
Step 9	Normal State specifies the state of the relay when in the normal (not alarm) condition. 0 = turn relay off when in normal 2 - none (nothing is done with the relay)	Comm Norm State 0,2 = 0 Off
Step 10	Off On Acknowledge specifies whether to turn the relay when the channel alarm is acknowledged. 0 = No (leave relay alone) 1 - Yes (turn it off)	Comm Off On Ack 0-1 = 0 No

4.6 Programming Relay Channels

This section allows you to configure the relays that are going to be controlled when sensors or system channels go into and out of alarm.

	What you do:	What the display shows:
Step 1	Press the 1 key to enter PROGRAM mode. You can now enter options $0 - 9$.	Program Mode 0-9 =
Step 2	Press 7 Enter Access Code if requested.	NOTE: If an Access Code has been programmed, the 1600 will show a screen to enter it.
Step 3	Enter the Relay Number that you wish to examine or program. NOTE: 1 is the physical relay on the 1600 unit and 2-17 are Modbus addressable relays	Enter Relay Num 1-17 =
Step 4	Enter a name for this relay. For example, CL Warning	Rlynn Name Relay nn
Step 5	The Mode specifies whether this relay is disabled or in the operational mode. 0 – disabled 1 – Status Only (operational)	Rlynn Mode 0-1 = 1 StatusOnly
Step 6	Enter the Modbus Slave ID for the relay. The 1600 assumes it is reading a coil.	Rlynn Slave Addr 0-247 =
	NOTE: <i>Physical relay 1 has a Slave Address of 0.</i>	
Step 7	Enter the Register Number for the relay. NOTE: Physical relay 1 has a Register Number of 1.	Rlynn Reg Number 0-9999 = 1

4.7 Discovering Sensor Channels

This section describes how to automatically find and program sensor channels.

Auto discovery of all sensor heads attached to the serial network can be initiated from DISCOVER (8).

'Discover ALL' clears all current sensor configurations before starting, 'Discover NEW' looks for new sensor ID's and looks for mismatches between existing sensor ID's.

The discovery process includes the following:

- 1. For each ID possible in a network (1-247), the 1600 attempts to read registers the define the type of sensor and the type of gas.
- 2. If a sensor responds, a channel is allocated to that sensor. If no response, the 1600 increments to the next ID.
- 3. If a sensor is present, then the alarm set points for that sensor are read.
- 4. Once this new found sensor channel is setup, the 1600 reads to determine if this is a dual-head installation. If a second sensor is found, then the next channel is allocated for that sensor.
- 5. This process continues until either the user interrupts the discovery process or all ID's have been tried.
- 6. The user has the option to manually modify the configuration of any channel using the Sensor configuration (9) function.

NOTE: *The DISCOVER process can be stopped at anytime by pressing the ENTER or* (#) *key.*

	What you do:	What the display shows:
Step 1	Press the 1 key to enter PROGRAM mode. You can now enter options $0 - 9$.	Program Mode 0-9 =
Step 2	Press 8 Enter Access Code if requested.	NOTE: If an Access Code has been programmed, the 1600 will show a screen to enter it.
Step 3	Press 1 to erase the current sensors and find ALL sensors attached to the Modbus Master network. Press 2 to only find NEW or different sensors on the Modbus Master network.	Auto Discovery 1=ALL 2=NEW

	What you do:	What the display shows:
Step 4	Press # to execute the ALL or NEW operation. Press 0 to exit this step.	Discover #-accept 0-exit =
Step 5	The 1600 scans through all IDs from 1 to 247, or until IDs are used. As each ID is scanned, the <status> will indicate if a sensor was found and what type was found.</status>	ID:nn <status></status>
Step 5	The 1600 scans through all IDs from 1 to 247, or until IDs are used. As each ID is scanned, the <status> will indicate if a sensor was found and what type was found.</status>	ID:nn <status></status>

NOTE: By default, when a sensor channel is configured, the alarm relays are set to Relay 1 and Relay 1. Any other **Relay** channels have to be configured manually by the user through PROG> RELAYS (7).

4.8 Programming Sensor Channels

This section allows the user to configure or modify the sensors individually. There are a total of 16 available sensor channels, numbered 1-16.

	What you do:		What the display shows:
Step 1	Press the 1 key to mode.	enter PROGRAM	Program Mode 0-9 =
	You can now ente	er options 0 – 9.	
Step 2	Press 9 Enter Access Coa	le if requested.	NOTE: If an Access Code has been programmed, the 1600 will show a screen to enter it.
Step 3	Enter the Sensorn to examine or pro	Number that you wish gram.	Enter Sensor Chan 1-16 =
Step 4	The Sensor Type being modified or	is the gas sensor that is r configured.	Sensnn Sensor Type 0-20 = 0 None
	1 = CO 3 = NO 5 = NO2 7 = CL2 9 = HCL 11 = CLO2 13 = H2 15 = LEL 17 = CO/H2 19 = O3 NOTE: When the selected, the limit defaulted for that	2 = H2S $4 = NH3$ $6 = SO2$ $8 = HCN$ $10 = PH3$ $12 = O2$ $14 = CH4$ $16 = IP LEL$ $18 = ETO$ $20 = CO2$ $e Sensor Type is$ is are automatically type of sensor.	
Step 5	Enter the Modbus sensor.	s Slave ID of the	Sensnn Slave Addr 1-247 =
Step 6	The Register Typ Function code.	e specifies the Modbus	Sensnn Reg Type 1-4 = 3 RdHold
	NOTE: All ISC s	ensors use 3 for Read	

	What you do:	What the display shows:
	Holding.	
	Others supported are: 1 – Read Coil (digital value) 2 – Read Status (digital value) 4 – Read Input (analog value)	
Step 7	The Register Number is the Modbus register that contains the sensor reading. NOTE: All ISC sensors use 102 for single head and 102 and 202 for dual	Sensnn Reg Number 1-9999 = 102
	head.	
Step 8	Enter a 20 character name for this sensor.	Sensnn Name AIN Chan 1
	NOTE: <i>Refer to 4.3</i> How to Enter Text for Names.	
Step 9	Enter the type of Engineering Units for this sensor.	Sensnn Engr Units 0-20 =
	0 none 1 pct 2 ppm 3 gals 4 gpm 5 gph 6 ft 7 rpm 8 psi 9 degC 10 degF 11 in 12 meters 13 km 14 liters 15 kliters 16 grams 17 kg 18 lbs 19 %vol 20 %lel	
Step 10	The Decimal Position specifies the number of digits to the right of the decimal point.	Sensnn Dec Pos 0-5 = 1
Step11	Signed Register indicates if the value being read is signed or unsigned.	Sensnn Signed Reg 0-1 = 1 yes

	What you do:	What the display shows:
Step12	Scaled Input indicates if the value read is already in engineering units or needs to be scaled into engineering units.	Sensnn ScaleInput 0-1 = 0 No
	NOTE: If Scaling is required, the user is asked to enter: Min Counts – minimum value in counts Max Counts – maximum value in counts Zero – minimum value in eng. units Full – maximum value in eng. units	
	<i>For example,</i> the reading from a gas sensor has 2 significant decimal places $(xx.xx)$ in the register value and the user only wants to display 1 $(xx.x)$. Set the number of decimal places to 1, min counts = 0, max counts = 10000, zero scale =0.0, full scale =100.0.	
	NOTE: Any time the decimal point is changed, it affects the zero scale, full scale, low limit, and the high limit.	
Step13	Enter the type of Alarm Mode that will be used.	Sensnn Alm Mode 0-5 = 4 AboveLimit
	 0 - disabled (channel not read) 1 - Status only (no alarming) 2 - Outside a Range 3 - Below a Limit 4 - Above a Limit 5 - Inside a Range 	
Step 14	The Alarm Delay specifies the number of seconds there must be no communication to a device until the alarm is generated.	Sensnn Alm Delay 0-65535 secs = 10
Step 15	The Re-Alarm Delay specifies the number of minutes the channel will automatically go back into alarm if the alarm was acknowledged AND the alarm condition still exists.	Sensnn Re-Alm Mode 1-1440 mins = 60
Step 16	The Low Limit alarm for the sensor.	Sensnn Low Limit +/-99999 = +10.0
	1	1

	What you do:	What the display shows:
Step 17	The High Limit alarm for the sensor.	Sensnn High Limit +/-99999 = +50.0
Step 18	The Relay to activate on Low Alarm	Sensnn Lo ALm Rly Relay 1-17 = 2
Step 19	The state the relay should be in the Alarm condition: 1 = On, 2 = no change	Sensnn Lo Alm State 1-2 = 1 On
Step 20	The state the relay should be in the non- Alarm or Normal condition: 0 = Off, 2 = no change	Sensnn Lo Norm State $0, 2 = 0$ Off
Step 21	The Relay to activate on High Alarm.	Sensnn Hi ALm Rly Relay 1-17 = 3
Step 22	The state the relay should be in the Alarm condition: 1 = On, 2 = no change	Sensnn Hi Alm State 1-2 = 1 On
Step 23	The state the relay should be in the non- Alarm or Normal condition: 0 = Off, 2 = no change	Sensnn Hi Norm State 0,2 = 0 Off
Step 24	Off On Acknowledge specifies whether to turn the relay when the channel alarm is acknowledged. 0 = No (leave relay alone) 1 – Yes (turn it off)	Sensnn Off On Ack 0-1 = 0 No

5 RUN Mode functions

While the Scout is in RUN mode it is scanning all inputs, evaluating them for transitions into and out of alarm conditions, performing alarm calls and updating the display.

The default RUN mode display looks like this:

There are 6 functions that can be performed while in RUN mode.

Function	Capability
Keypad 0	Get system status
Keypad 1	Enter Program mode
Keypad 2	Toggle Arm/Disarm
Keypad 5	View Event Log
Keypad 7	Activate Relay
Keypad 9	Acknowledge alarms

The only difference between the armed state and the disarmed state is that in the disarmed state, no relays are allowed to be set/reset by an alarm condition.

However, the user can perform manual control over the relays via the keypad while in the disarmed state. The timeout in going back to the armed state automatically is fixed at 30 minutes.

6 Getting System Status

Status reports the current conditions of the 1600. It will report the current condition of system channels, relays and sensors.

6.1 Sensor Status

To review the current sensor status from either RUN or PROGram mode, press the STATUS (0) key.

The 1600 displays the first sensor channel. To view the other sensors **press the PREV key to move backward** or the **NEXT key to move forward**.

6.2 Relay Status

To review the relay status from either RUN or PROGram mode, press the RELAYS (7) key.

The 1600 displays the first relay channel. To view the other relays **press the PREV key** to move backward or the **NEXT key to move forward**.

6.3 Fault Status

To review the fault status from either RUN or PROGram mode, press the FAULTS (4) key.

The 1600 displays the first system fault channel. To view the other fault channels **press the PREV key to move backward** or the **NEXT key to move forward**.

Num Devices shows the total number of sensors configured.

MinID and MaxID are the lowest and highest Slave IDs for sensors that are configured. acked – alarm acknowledged alm – a sensor is in alarm norm – condition is normal comm. – communication error in cal – in calibration in zero – in zero cal flt – calibration fault zero flt – zero fault sens fail – sensor fail flag set sens miss – sensor is missing

7 Verifying Communication

The Communication channel, viewed by pressing FAULTS from RUN mode, indicates whether all sensors and relays are being read without error or not.

If the status is 'norm', then all sensors and relays are being read correctly.

If the status is 'comm', then at least 1 sensor or relay is not being read correctly.

NOTE: If communication with a sensor is lost, the Communication channel will not go into alarm until the Alarm Delay period, which is defaulted to 10 seconds.

The most common causes for a Comm Fault are:

1.	The serial cable is disconnected.
	(all sensors and relays would have comm. fault)
2.	The ID is not correct.
	(generally a single sensor or relay is incorrect)
3.	The Baud Bate is not correct.
	(all sensors and relays would have comm. fault)
4.	The Register Type or Register Number are not correct.
	(generally a single sensor or relay is incorrect)
5.	The Max Idle it too low.
	(some sensors and relays would have comm. fault)
6.	The Response Timeout is too low
	(some sensors and relays would have comm. fault)

8 Acknowledging alarms

A channel, Fault or Sensor, goes into alarm when it transitions out of the normal condition specified in the Alarm State.

When a channel for into alarm, any configured relays activate and the display automatically shows all channels in alarm in a scrolling mode.

The alarms can be acknowledged by pressing the ACK key while the 1600 is in RUN mode.

If configured, relays can be turned off when an alarm is acknowledged.

9 Arming and Disarming

At times it may be beneficial to Disarm the 1600 to prevent it from turning relays on/off. This is generally done when you are performing maintenance on equipment being monitored and do not want unnecessary alarms generated.

NOTE: The 1600 must b	e in the RUN mode
-----------------------	-------------------

|--|

	What you do:	What the display shows:		
1	Press the 2 key to toggle between Armed and Disarmed.	Run Mode 03:04:07 armed		
	NOTE: If the 1600 is Disarmed, it will automatically become Armed after 30 minutes.			

10 Modbus Slave

Use Communication Port 2 for Modbus Slave communication.

Channel	Modbus Function	Register
COMM	Read Status	1
FAULT	Read Status	2
COMM Alarm status	Read Status	101
FAULT Alarm status	Read Status	102
Sensor Alarm Status	Read Status	201 - 216
Sensor channel data	Read Holding	1 – 16
Relay state	Read Coil	1 – 17
Set relay state	Write Coil	1 - 17

11 Using Diagnostics on Port 2

Port 2 is defaulted to be a Modbus Slave connection, however, it can be used as a diagnostics port to perform some basic functions.

The most common use of this port is to monitor all Modbus traffic on Port 1 to help diagnose network issues.

To use Port 2 as a diagnostics port, set the Mode to 1 (Debug). Connect a laptop or PC to Port 2 and run Hyperterminal or another terminal emulation package.

The following menu will be displayed when you press the Enter key from Hyperterminal.

```
ISC 1600 GC - S16R16 (v3.2)
0) System Config
1) Channel Config
2) System State
3) Timers
4) Chan Data
5) Event Log
6) System Maint
7) Status Report
Cmd =>
```

NOTE: To monitor the Modbus traffic on Port 1, press the '?' key from the top menu. The '?' key toggles the traffic viewing on and off.

12 Retrieving the Event Log

The 1600 keeps the last 300 events that occurred in a local non-volatile log. The Event Log can be viewed locally on the display.

The PREV moves backwards and the NEXT moves forwards through the logs.

12.1 To view the Event Log locally

	What you do:	What the display shows:	
Step 1	Press the 1 key to enter Program Mode	Program Mode 0-9 =	
Step 2	Press the LOG (5) key	View Log 0-Evt 1-Data =	
Step 2	Press 0 to view the Event Log	1) PROG Mode date time	
Step 3	Press the NEXT key to advance forward through the Event Log or the PREV key to move backward.	2) Relay On 2 date time	
	Press the # key when you are finished.		
Press # when finished			

Event	Event Description	Event	Event Description
#		#	
0	NULL Event	42	GSM unsolicited rea event
1	Power On	43	GSM result of +CFUN cmd
2	Dead Task with task number	44	GSM attach to network
3	System Armed	45	GSM has reset
4	Armed	46	Pager call
5	RUN Mode	47	Phone check Telco/GSM
6	PROGram Mode	48	Sending SMS msg
7	Configuration Change	49	Sending e-mail msg
8	Reset to System Defaults	50	Sending GPRS UDP/PAD msg
9	Call Answered	51	Receiving SMS msg with cmd
10	No Dial Tone	52	Railed to execute SMS cmd
11	Call Busy	53	Automatic update call out
12	Call Error	54	Reset DIN run limit
13	Call Aborted	55	Reset DIN starts
14	Call Timeout	56	Reset AIN totals
15	Call No Answer	57	Write Holding
16	Call Incoming	58	Receive DTMF tone
17	Call Complete	59	Comm OK
18	Voice Call	60	Comm Fail
19	Data Call	61	Set notified
20	Alarms acknowledged locally	62	Clear notified
21	Alarms acknowledged remotely	63	Normal call
22	Alarm call / phone position	64	Between calls timer
23	Open alarm / digital channel number	65	Time was set
24	Closed alarm / digital channel number	66	GPS fix (1=valid, 0=not)
25	Run time alarm / digital channel number	67	midnite posting to Web
26	Starts alarm / digital channel number	68	GSM modem lockout states
27	Low alarm / analog channel number	69	GSM lockout active
28	High alarm / analog channel number	70	GSM lockout end
29	Totalization alarm / analog channel number		
30	Channel is normal / channel number		
31	Channel acknowledged / channel number		
32	Relay channel on / channel number		
33	Relay channel off / channel number		
34	Normal data value for channel		
35	Starts data for digital channel		
36	Run time data for digital channel		
37	Totalizer data for analog channel		
38	Maximum value for analog channel		
39	Minimum value for analog channel		
40	Send status report		
41	Send events report		

13 Index

12VDC	.6
above a limit2	25
access code1, 15, 18, 20, 21, 2	23
ACK key	31
acknowledge alarms3, 19, 26, 3	31
alarm	
acknowledge19, 26, 3	31
alarm delay18, 2	25
alarm mode	.8
alarm state19, 3	31
baud rate7, 1	16
below a limit2	25
block requests	.7
channel	
communication3, 15, 18, 31, 3	32
names3, 14, 2	24
system fault3, 1	18
communication	
channel3, 15, 18, 31, 3	32
data bits7, 1	16
decimal position8, 2	24
DISCOVER9, 10, 11, 12, 1	13
engineering units2	24
enter text	24
event log3, 27, 33, 3	34
fault channels 3, 10, 18, 30, 3	31
full scale2	25
high limit8, 2	26
Hyperterminal	33
inside a range2	25
Installation3,	4
low limit8, 2	25
master1	6
max idle7, 3	31

Modbus
register number
register type 23, 31
Modbus Slave 3, 1, 6, 20, 23, 32, 33
ID10, 11
NEMA 4X 4, 6
off on acknowledge 19, 26
outside a range
parity
physical relay 1, 18, 20
power switch6
re-alarm delay 18, 25
register number
register type 23, 31
relay18
reset configuration17
reset event17
reset to system defaults35
response timeout7, 16, 31
RS-2321, 6, 15
RS-4851, 6, 8, 9, 10, 11
RUN Mode 3, 27, 35
scan rate7
sensor3, 2, 8, 9, 10, 11, 13, 18, 21,
22, 23, 24, 25, 26, 28, 31
sensor fault channel 18
serial port
slave16
status only18, 20
stop bits7, 16
system fault
channel 3, 18
text entry

Industrial Scientific Corporation

1001 Oakdale Road Oakdale, PA 15071-1500 Phone:(412)788-4353 1-800-DETECTS Fax:(412)788-8353

www.indsci.com