

User manual

GD1 MK3

Toxic Open Path Gas Detector

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

User Manuals in other languages are available on Website https://teledynegasandflamedetection.com

Copyright © September 2023 by TELEDYNE OLDHAM SIMTRONICS S.A.S.

All rights reserved. No reproduction of all or part of this document, in any form, is permitted without the written consent of TELEDYNE OLDHAM SIMTRONICS S.A.S.

All of the information that is provided in this document is accurate to the best of our knowledge.

As a result of continuous research and development, the specifications of this product may be changed without prior notice.

TELEDYNE OLDHAM SIMTRONICS S.A.S.

Rue Orfila

Z.I. Est - CS 20417

62027 ARRAS Cedex

Thank you for choosing this TELEDYNE OLDHAM SIMTRONICS S.A.S. instrument.

All of the necessary actions have been taken in order to ensure your complete satisfaction with this equipment.

It is important that you read this entire manual carefully and thoroughly.

Limitation of Liability

The Company TELEDYNE OLDHAM SIMTRONICS S.A.S., hereinafter referred to as "TELEDYNE OLDHAM SIMTRONICS" throughout this document, shall not be held responsible for any damage to the equipment or for any physical injury or death resulting in whole or in part from the inappropriate use or installation of the equipment, non-compliance with any and all instructions, warnings, standards and/or regulations in force.

No business, person or legal entity may assume responsibility on behalf of TELEDYNE OLDHAM SIMTRONICS, even though they may be involved in the sale of TELEDYNE OLDHAM SIMTRONICS products.

TELEDYNE OLDHAM SIMTRONICS shall not be responsible for any direct or indirect damage, or any direct or indirect consequence, resulting from the sale and use of any of its products UNLESS SUCH PRODUCTS HAVE BEEN SELECTED BY TELEDYNE OLDHAM SIMTRONICS ACCORDING TO THE APPLICATION.

Ownership clauses

The drawings, specifications, and information herein contain confidential information that is the property of TELEDYNE OLDHAM SIMTRONICS.

This information shall not, either in whole or in part, by physical, electronic, or any other means whatsoever, be reproduced, copied, divulged, translated, or used as the basis for the manufacture or sale of TELEDYNE OLDHAM SIMTRONICS equipment, or for any other reason without the prior consent of TELEDYNE OLDHAM SIMTRONICS.

Warning

This is not a contractual document. In the best interest of its customers and with the aim of improving performance, TELEDYNE OLDHAM SIMTRONICS reserves the right to alter the technical features of its equipment without prior notice.

READ THESE INSTRUCTIONS CAREFULLY BEFORE THE FIRST USAGE: these instructions should be read by all persons who have or will have responsibility for the use, maintenance, or repair of the instrument.

This instrument shall only be deemed to be in conformance with the published performance if used, maintained, and repaired in accordance with the instructions of TELEDYNE OLDHAM SIMTRONICS by TELEDYNE OLDHAM SIMTRONICS personnel or by personnel authorized by TELEDYNE OLDHAM SIMTRONICS.

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

Important Information

The modification of the material and the use of parts of an unspecified origin shall entail the cancellation of any form of warranty.

The use of the unit has been projected for the applications specified in the technical characteristics. Exceeding the indicated values cannot in any case be authorized.

TELEDYNE OLDHAM SIMTRONICS recommends regular testing of fixed gas detection installations (read Chapter 6).

Warranty

The GD1 comes with a 5 year limited warranty on the product. The warranty covers correct function inside specified tolerances. Warranty is void if the detector has been installed or operated in conflict with specifications and procedures given in this operating manual.

Waste Electrical and Electronic Equipment (WEEE directive)

European Union (and EEA) only. This symbol indicates that, in conformity with directive WEEE (2002/96/CE) and according to local regulations, this product may not be discarded together with household waste.

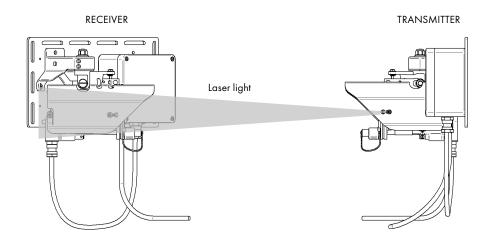
UK. This symbol indicates that, in conformity with directive WEEE: SI 2018 N°1214 and according to local regulations, this product may not be discarded together with household waste

It must be disposed of in a collection area that is set aside for this purpose, for example at a site that is officially designated for the recycling of electrical and electronic equipment (EEE) or a point of exchange for authorized products in the event of the acquisition of a new product of the same type as before.

Table of contents

I	Int	roduction	ı
	1.1	The system	1
	1.2	Definitions	1
2	Ins	tallation	3
	2.1	System parts	3
	2.2	Positioning	5
	2.3 2.3.1	Mounting Mounting on pole	
	2.4	Sun shielding	6
	2.5 2.5.1 2.5.2 2.5.3	Cable types and specification	10 11
	2.5.4		
3	Co	ommissioning	15
	3.1	Preparation	16
	3.2	Coarse alignment	16
	3.3 3.3.1 3.3.2		18
	3.4 3.4.1	Function test	
4	Op	peration	33
	4.1	Analogue Output Protocol	33
	4.2	Test Cell filling and emptying instructions	35
5	Mo	aintenance	37
	5.1	Regular maintenance	37
	5.2	Cleaning of optical surfaces	37
6	Tro	oubleshooting	39
	6.1	Error codes	41
	6.2	Tuning detector for less noise	42
	6.3	Interference from another GD1	44

TOXIC OPEN PATH GAS DETECTOR USER MANUAL


6.4	Download the Diagnostics file	45
6.5	Uploading a Configuration file	45
7 C	ertifications and standards	49
7.1	Certification	49
7.2	Marking	49
7.3	Specific condition for use in Explosive Atmosphere "X"	50
8 A	ccessories and spare parts	51
8.1	Ordering information for the GD1	53
9 Te	echnical Specifications	55
10 S	ystem description	59
10.1	System	59
10.2	Application areas	61
10.3	Positioning considerations	61
10.	3.1 General positioning considerations regarding a gas cloud	61
10.4	Detection principles	62
10.5	How to connect to the web interface with the Ethernet cable	63
10.6	HART® Interface	66
10.	6.1 Overview HART® menu	67
10.7	Data logging functionality	69
11 S	upport and contact details	<i>7</i> 3
11.1	Shipping instruction sending units to support	73
12 FI	II Declaration of conformity	75

1 Introduction

1.1 The system

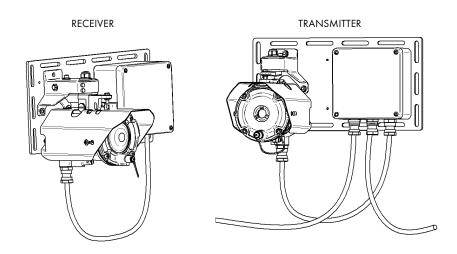
The GD1 is a laser-based open path Gas Detector with a separate transmitter (TX) and receiver (RX). The TX emits infrared laser light detected by the RX. The detection principle is based on measuring the absorption of light by the gas molecules along the optical line-of-sight.

1.2 Definitions

TX	Transmitter
RX	Receiver
Absolute transmission	Strength of the optical signal
Relative transmission	The relative strength of the optical signal in percentage relative to the Absolute transmission when finishing alignment.
	During commissioning, the GD1 is set up with optimum alignment and signal strength. The relative transmission is used to keep track on how dirty or out of alignment the system has become after the GD1 was commissioned.

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

THIS PAGE LEFT INTENTIONALLY BLANK



2 Installation

The area in which the detector may be installed must be in accordance with the certification of the detector and in accordance with the standards of the appropriate authority in the country of installation.

2.1 System parts

The complete GD1 system consists of a TX sending a laser beam to the RX. Communication to control room and power to the GD1 is connected to the TX. Between the TX and RX there is a cable with communication and power.

The TX where the laser is located sends a diffused light beam (invisible) to the receiver. The beam is shaped as a cone, not a focused laser beam as you might expect from a laser pointer. The TX comes complete with the TX and junction box mounted on a backing plate.

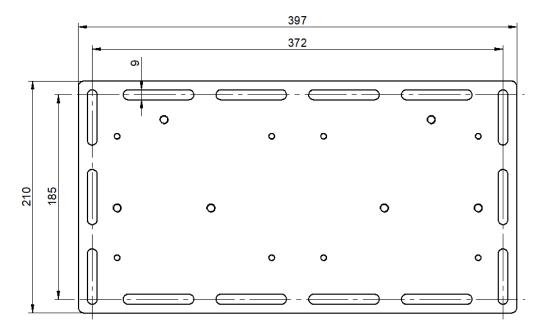
The RX has a larger optical aperture to collect the transmitted light and add margin to path alignment. The TX and RX communicate on a data link (cable). The RX comes complete with the RX and junction box mounted on a backing plate.

TOXIC OPEN PATH GAS DETECTOR **USER MANUAL**

THIS PAGE LEFT INTENTIONALLY BLANK

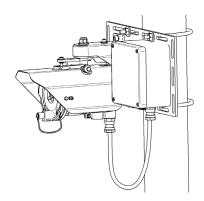
TELEDYNE OLDHAM SIMTRONICS Everywhereyoulook P/N: 850-816926 EN Revision 8b

2.2 Positioning


Deciding on how the GD1 detectors should be placed at the site is discussed in section 10.3. During installation the detector should be positioned according to the following points:

- Check that there is a free line of sight between the TX and RX.
- The measuring path should be horizontal.
- Avoid that the measuring path is blocked by temporary scaffolding, parked cars, high traffic and moving structures.
- The detector should be attached to a mechanically rigid structure.
- The GD1 should be positioned as to avoid more than one TX transmitting into a RX. Failing to do this can lead to interference between the detectors and false alarms.
- The transmitter and receiver units are to be fitted perpendicular to the measuring path, within ± 20 degrees.

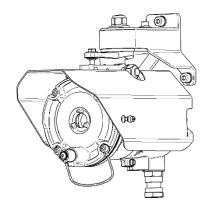
2.3 Mounting


The GD1 Transmitter and Receiver system assemblies are delivered on a 6mm (1/4") universal mounting plate suitable for most mounting situations. See figure below for general dimensions (mm).

The transmitter and receiver units are to be mounted perpendicular to the measuring path, within ± 20 degrees.

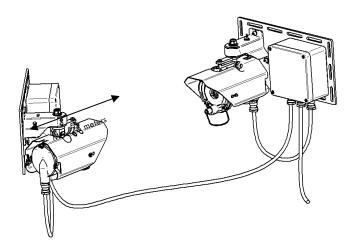
2.3.1 Mounting on pole

If the detector is mounted on a pole/pipe, it is important that the pole/pipe is structurally rigid enough that the detector will not move out of its alignment tolerances. When choosing pole diameter, one must account for mounting height. TELEDYNE OLDHAM SIMTRONICS recommends that for a mounting height of 2m, minimum \emptyset 3" (75 mm) pole is used for sufficient rigidity. If mounting height is increased, pole/pipe diameter should increase accordingly.



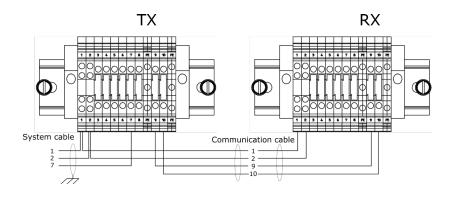
2.4 Sun shielding

The transmitter and receiver are fitted with a sun shield as standard.


In locations where there is a risk that the temperatures can exceed the certified limits for the ambient temperature, a canopy can be mounted above the detector for additional sun shielding.

It is not recommended to store a GD1 for a long time un-powered outside in a hot environment. If the detector is stored unpowered in high temperatures for several months, it might lead to settings needing adjustment.

2.5 Electrical connection and wiring


Make sure that power is disconnected or switched off before connecting any wires.

The system supplying power to the GD1 shall have a fuse allowing maximum 1 A of current to enter the GD1.

The detector must be earthed for electrical safety and to limit the effects of radio frequency interference. Earth connection points are provided on the underside of the GD1 housing and inside the Junction Box.

The connection terminals are accessed by removing the covers of the junction boxes. Wiring diagrams are shown below. The system cable only goes to the transmitter unit. The cable between the junction boxes carries the power to the receiver and the communication signals. Unless otherwise instructed, please observe that the system power and analogue output cable is terminated on the transmitter side of the GD1 system.

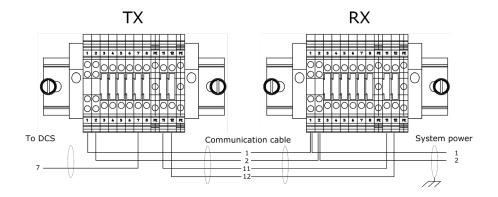
Wiring overview Transmitter Junction Box:

System cable	Terminal	Cable from GD1 instrument Wire color	Transmitter Junction Box	Com. cable	
+24 VDC	1	White	+24 VDC	+24 VDC	
0 V Return (GND)	2	Brown	0 V Return	0 V Return (GND)	
	3	Green	Ethernet®		
	4	Yellow	Ethernet®		
	5	Black	Ethernet®		
	6	Violet	Ethernet®		
			4-20 mA primary gas value and HART®.		
Signal to control room	7	Blue	Default is source configuration with 4-20 mA measured between terminals 7 and 2 (0V).		
			For sink configuration 4-20 mA is measured between terminals 7 and 1 (24 V).		
	8	Red	Secondary current loop: Relative transmission (configurable).		
	PE	-	Earth		
	11*	Gray	TxRx Com 1 from Rx	TxRx Com 1	
	12*	Pink	TxRx Com 2 from Rx	TxRx Com 2	
	PE	-	Earth		
	Note! Instrument damage can occur if incorrectly connected.				

^{*} Wires to terminal 11 and 12 shall be twisted.

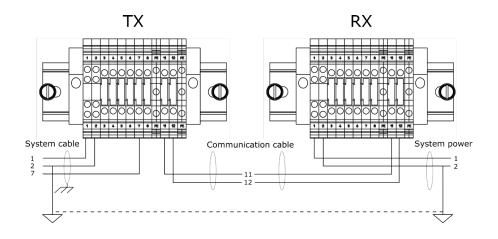
Wiring overview Receiver Junction box:

System cable	Terminal	Cable from GD1 instrument Wire color	Receiver Junction Box	Com. cable	
	1	White	+24 VDC from Tx	+24 VDC	
	2	Brown	0 V Return from Tx	0 V Return (GND)	
	3	Green	Do not connect.		
	4	Yellow	Do not connect.		
	5	Black	Do not connect.		
	6	Violet	Do not connect.		
	7	Blue	Tertiary current loop: Relative transmission (configurable).		
	8	Red	Do not connect.		
	PE	-	Earth		
	11*	Gray	TxRx Com 1 from Tx	TxRx Com 1	
	12*	Pink	TxRx Com 2 from Tx	TxRx Com 2	
	PE	-	Earth		
	Notel Instrument damage can occur if incorrectly connected.				


^{*} Wires to terminal 11 and 12 shall be twisted.

2.5.1 Alternative wiring configurations

The default wiring configuration for the GD1 is with power and 4-20 mA connected to the TX side, and with power supplied to the RX via the TX junction box.


Wiring alternative 1: System power connected on the receiver side

Wiring alternative 2: Power on both receiver and transmitter side

The instrument O V shall be the same for both RX and TX.

2.5.2 Cable types and specification

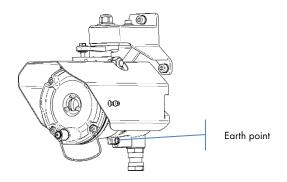
Cables must be chosen in accordance with applicable regulations.

System cable:

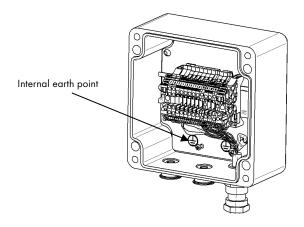
Cable from the GD1 system to control system. The table below indicates maximum cable lengths (2-wire) restrictions due to voltage drop over the power supply cable.

Min. single wire cross area	0.75 mm2	1.25mm2	2.5 mm2	4.0 mm2*
Supply voltage 24 VDC, terminal 1. Max length.				
Supply voltage 0 V Return on terminal 2. Max length.	125 m	250 m	400 m	800 m*
Primary Loop, terminal 7.	current loop,	including cabli	at the total impong, connections be maximum 5	and input on

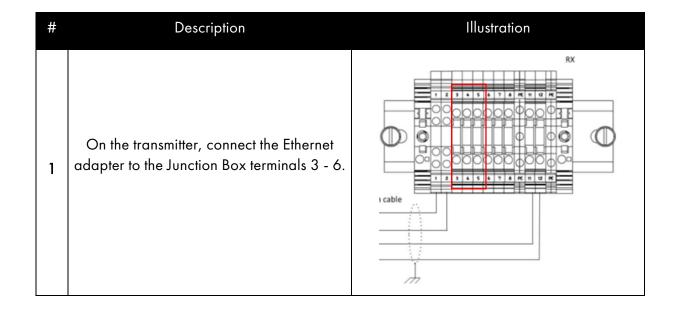
^{*}The GD1 is by default delivered with terminal blocks for wires up to 2.5 mm².


TX / RX communication cable:

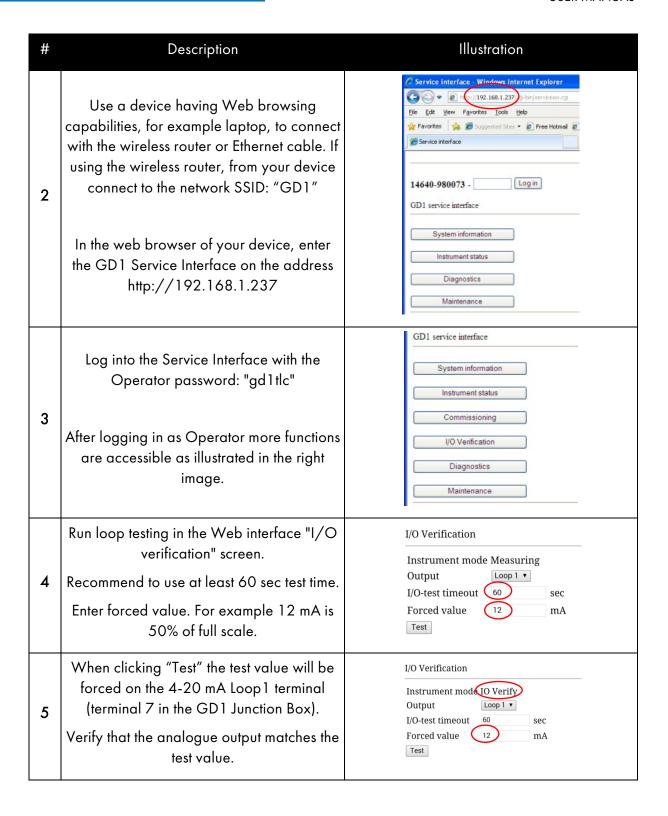
Cable between the GD1 Transmitter and Receiver, containing data and power supply. The cable shall be an instrument type with 2 twisted, individually shielded pairs and with an overall shield. Wiring up to 200 meters shall have a minimum cross section of 0.75 mm². For longer distances the maximum impedance of 70 Ω must be considered.

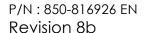

2.5.3 Earth connection

The detector housing must be connected to local earth via the external earth point. The wire should be minimum 4 mm² (8 AWG) and as short as possible.



The shield of the system cable should be connected to instrument earth in the central control module, and is normally not terminated at the detector. Exception: If extra RFI protection is required, and the installations grounding principles/regulations allows it, the shield is terminated to local ground via the internal earth point at the detector instead.




2.5.4 Performing loop test

After powering up the GD1 a test can be performed of the 4-20 mA wiring. The loop test is performed by the procedure below.

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

THIS PAGE LEFT INTENTIONALLY BLANK

3 Commissioning

The commissioning of the GD1 consists of four steps:

- Section 3.1 Preparation.
- Section 3.2 Coarse alignment.
- Section 3.3 Fine tuning
- Section 3.4 Function test

3.1 Preparation

Before commissioning check that the following points are fulfilled:

- Commissioning should be carried out in clear weather in order to allow for correct transmission settings.
- There is a free line of sight between the transmitter (TX) and receiver (RX).
- Check that optical surfaces on the detector and reflector are clean and dry.
- There should be no H2S gas present during commissioning.

Power up the GD1 system and let it warm up for 30 minutes before doing the final alignment in section 3.3.

3.2 Coarse alignment

The objective for the coarse alignment is to set an initial transmission level. This signal level is then used as a reference for further tuning, and a minimum signal level must be present before fine alignment can be performed.

#	Description	Illustration
1	Clean the lens on the RX and TX and remove the cover from the alignment slot.	
2	Turn on Alignment Laser and insert into the RX alignment slot, and the Laser Target Plate on the TX side.	
_	Do not stare directly into the Alignment Laser to use the laser safety glasses. In sharp sunlig see the laser pointer.	
3	Loosen screws 2 and 3 on both the TX and RX. Important: Nut A and nut on bolt B are tightened correctly in the factory and should not be touched. If tightened too much, they may jeopardize the correct operation of adjustment screws.	S G B A 2 4

#	Description	Illustration
4	Rotate horizontally by hand so the RX and TX points towards each other.	
5	Adjust the RX with screws 4 (vertical direction) and horizontal by hand until the laser spot hits the target plate on the TX.	
	Tighten screws 2 and 3 fully on RX so it cannot be moved by hand anymore.	
6	Swap sides Alignment Laser and Laser Target Plate so Alignment Laser now is attached to the TX side.	
7	Now adjust the TX with screws 4 (vertical direction) and horizontal by hand until the laser spot hits the target plate on the RX. Tighten screws 2 and 3 fully on TX so it cannot be moved by hand anymore.	
8	Keep the Alignment Laser and Laser Target Plate in place to assist in the Fine tuning procedure.	Coarse alignment finished!

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

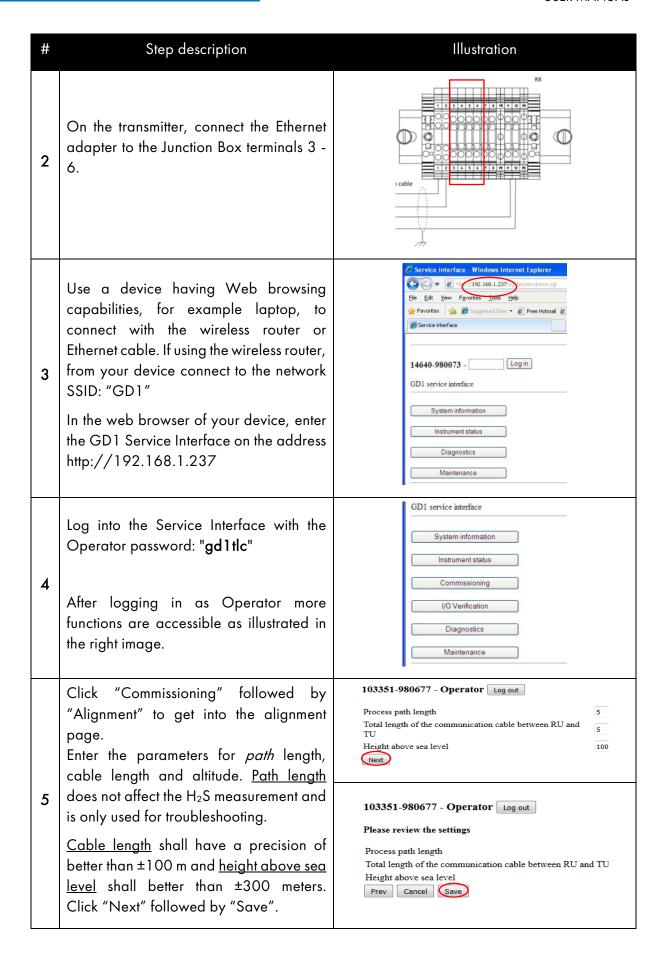
3.3 Fine tuning

Please be aware that the GD1 4 - 20 mA output going to control system is set to 2 mA during alignment, 1 mA during during power up and after reset to measurement mode (Init).

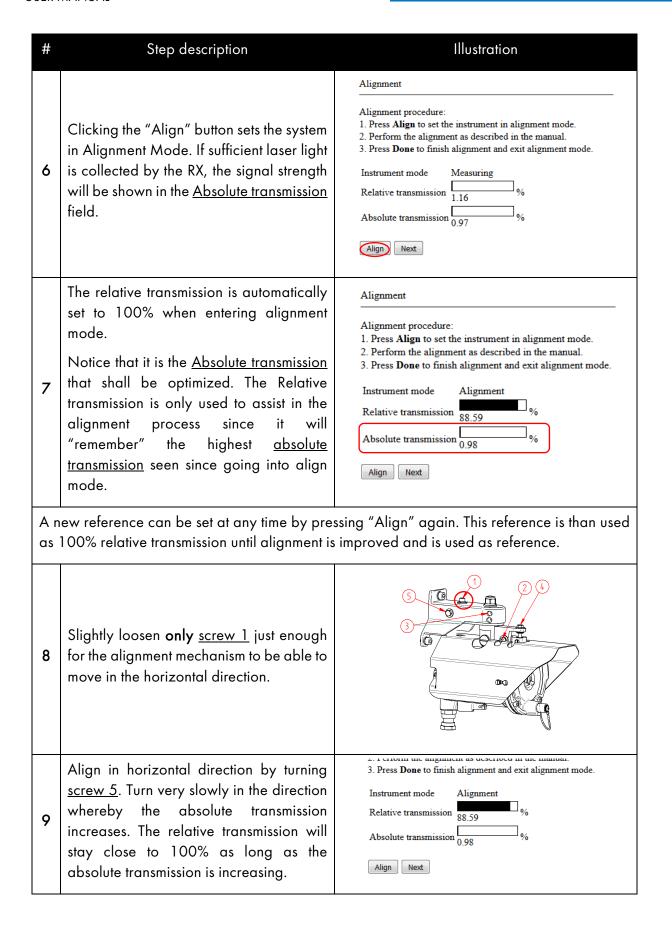
Note! Poor alignment will reduce system performance. Use care to ensure good alignment. Be aware that the nature of the GD1 system's laser beam implies a smaller target area than with traditional open path systems, and higher alignment accuracy is needed to achieve sufficient optical transmission levels.

Tuning of signal strength (transmission tuning) can be performed with two different methods:

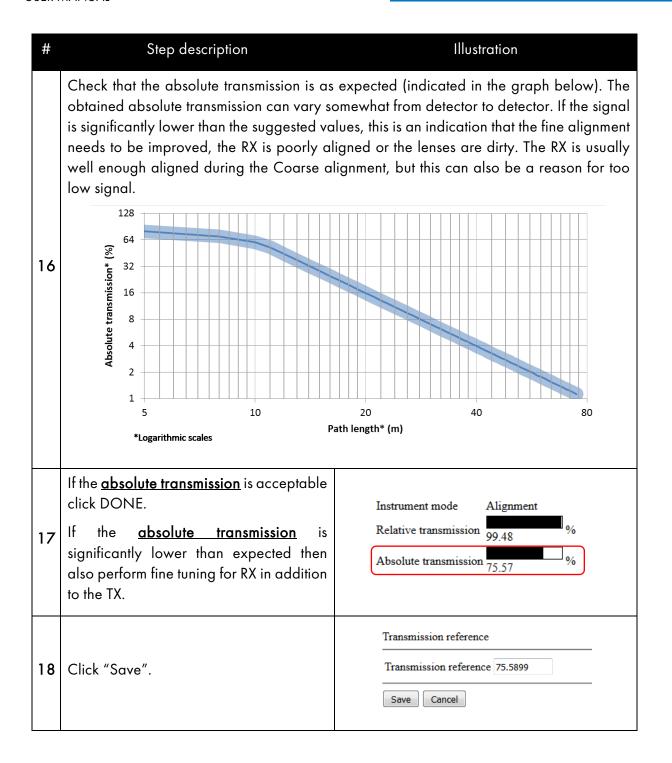
- Using a Web browser through an Ethernet connection. This is the preferred method.
- Using a HART® terminal connecting through the 4-20 mA current loop (Primary current loop) and a multimeter.

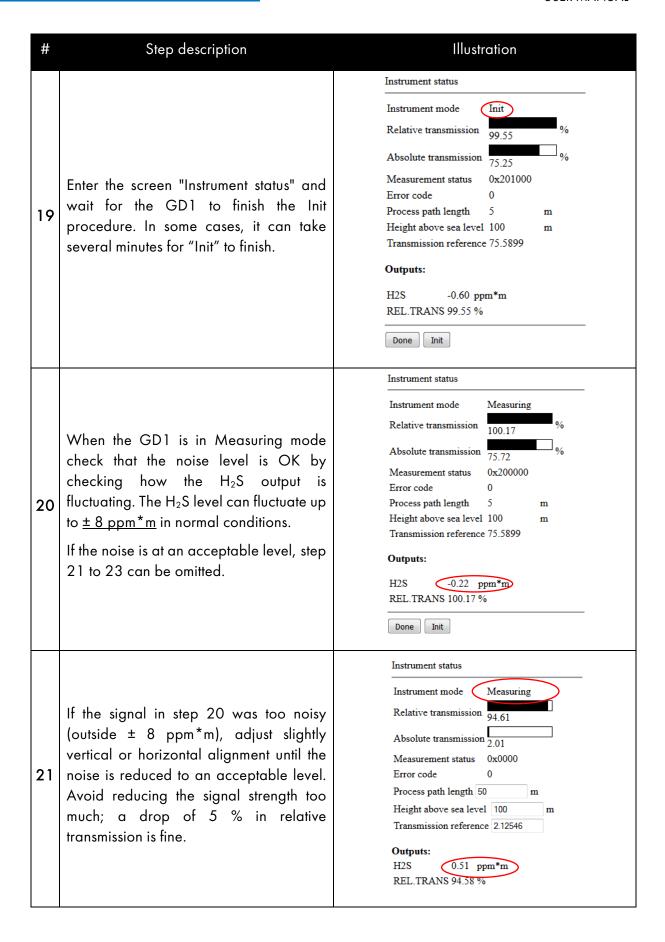

Both methods are explained in the two sections below.

3.3.1 Using a Web browser for tuning of signal strength


All functions for the GD1 Service Interface are described in section 10.5. The procedure for fine alignment and transmission tuning is as follows:

#	Step description	Illustration
1	Clean the lenses of both transmitter (TX) and receiver (RX) for any dirt before proceeding. The optical path should be clear at the time of aligning (avoid fog, mist, steam, rain, snow, etc.).	


20



TELEDYNE OLDHAM SIMTRONICS P/N: 850-816926 EN Revision 8b

#	Step description	Illustration
10	When continuing to turn the screw after the maximum signal strength is reached, the absolute and relative transmission will start to drop.	Instrument mode Measuring Relative transmission 1.16 % Absolute transmission 0.97 %
11	Turn screw 5 back the other direction until the relative transmission is better than 95%. This should be close to the optimum position in the horizontal direction.	Instrument mode Alignment Relative transmission 99.48 Absolute transmission 75.57 Align Next
12	Tighten screw 1.	
13	Slightly loosen only <u>screw 2</u> just enough for the alignment mechanism to be able to move in the vertical direction. Note that the absolute and relative transmission will typically drop slightly when <u>screw 2</u> is loosened. If the values drop significantly, it can be helpful to reset the relative transmission to 100% again by clicking the "Align" button.	3
14	Align in vertical direction by turning <u>screw</u> <u>4</u> . As for the horizontal alignment, turn very slowly in the direction whereby the absolute transmission increases. After reaching the maximum and the signal starts to drop, turn back until the relative transmission is better than 95%.	2. Perform the anginnent as described in the manual. 3. Press Done to finish alignment and exit alignment mode. Instrument mode Alignment Relative transmission 99.48 Absolute transmission 75.57 Align Next
15	Tighten screw 2.	

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

#	Step description	Illustration
22	When finished minimizing the noise, enter Alignment mode, click "Done" and "Save" on the following screen.	Alignment procedure: 1. Press Align to set the instrument in alignment mode. 2. Perform the alignment as described in the manual. 3. Press Done to finish alignment and exit alignment mode. Instrument mode Alignment Relative transmission 99.67 Absolute transmission 2.00 Align Done
Verify that the GD1 enters Measuring mode.		Instrument mode Measuring Relative transmission 100.11 Absolute transmission 2.00 Measurement status 0x0000 Error code 0 Process path length 50 m Height above sea level 100 m Transmission reference 2.00218 Outputs: H2S -0.07 ppm*m REL.TRANS 100.17 %
Not		tering any noise/measurement and outputting 4 as the measurement is below 7% FS.
	Fine tuning	g finished!

TELEDYNE OLDHAM SIMTRONICS Everywhereyoulook*

3.3.2 Using a HART® for tuning of signal strength

For tuning of signal strength and setting of transmission reference level, use the Alignment Interface Unit and a HART® terminal.

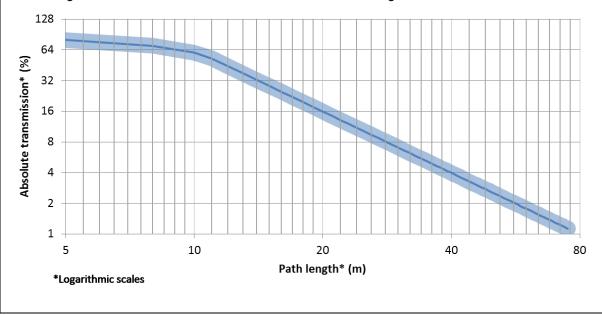
#	Step description	Illustration / response		
1	Clean the lenses of both transmitter (TX) and receiver (RX) for any dirt before proceeding. The optical path should be clear at the time of aligning (avoid fog, mist, steam, rain, snow, etc.).			
2	Connect the HART® terminal between terminal 7 and 2, in parallel with a resistor as shown in the figure to the right. See section 10.6 for a more detailed description on HART®.	4-20 mA, rel. trans. 8 4-20 mA, HART 7 0 V 2 +24 VDC 1 HART® terminal connection for source variant		
3	On the HART® terminal start the "Alignment procedure". This can be found in the following path: Configuration → Setup → Alignment	GD1: Setup 1 Manuel Sot up 2 Alignment SAVE HOME		
4	On the HART® terminal enter the command: #SM	Terminal response: SM Analogue loop 1 (terminal 7) and loop 2 (terminal 8) will output 2 mA.		
The system is now entering Service Mode. Using HART®, it is necessary to go through Service				

Mode to enter or exit Alignment Mode.

#	Step description	Illustration / response
5	On the HART® terminal enter the command: #AM	Terminal response: AM Response on secondary loop (terminal 8) is set to between 3 and 14 mA depending on the strength of the optical signal received on the RX.

The system is now entering Alignment Mode (AM). If sufficient initial IR laser light is collected by the receiver, the mA meter will show a value near 14 mA. If too little laser light is received at the RX, the meter will show 3 mA. If this is the case, repeat coarse alignment until the mA meter shows a higher value.

By factory setting, 14mA represent the strongest optical signal received after entering AM. Any value lower than 14 mA means that the alignment between TX and RX is less optimized than the best position seen during AM. If the alignment is improved the signal strength is increasing and the value on the mA-meter will increase. If the signal strength is increased to above 14 mA, the scale will automatically be increased so the new best position again is 14 mA. By outputting this information it allows for a user to gradually narrow down to an optimal alignment position by manually sweeping the beam spot back and forth in each direction.


	6	Slightly loosen <u>screw 1</u> just enough for the alignment mechanism to be able to move in the horizontal direction.	
	7	Align in horizontal direction by turning screw 5. Turn very slowly in the direction whereby the signal strength increases. The signal reading will stay close to 14 mA as long as the signal strength is increasing.	5 0 2 4
	8	When the maximum signal strength is reached and the mA reading will start to drop.	
	9	Turn screw 5 back the other direction until the signal strength is back at maximum. The typical signal strength after a successful fine alignment should preferably be above 13.9 mA. Do not expect to see exactly 14 mA.	
	10	Tighten screw 1.	

#	Step description	Illustration / response
11	Slightly loosen screw 2 just enough for the alignment mechanism to be able to move in the vertical direction. Note that the signal strength will typically drop slightly when screw 2 is loosened. If the value drops significantly, it can be helpful to reset the maximum recorded signal strength by entering #AM on the HART® terminal.	
12	Align in vertical direction by turning screw 4. As for the horizontal alignment, turn very slowly in the direction whereby the signal increases. After reaching the maximum and the signal starts to drop turn back until the signal is back close to the maximum.	
13	Tighten screw 2.	
14	Store the current signal strength (absolute transmission) and exit Alignment mode by entering the following command in the HART® terminal: #SAV	Terminal response: SM:OK Saves the current settings, exits Alignment Mode and enters Service mode.
15	Set the elevation above sea level by entering: #MW 0 <altitude in="" meters=""> For example, for a setting of 100 meters above sea level, the syntax is: #MW 0 100 Note! The height should be in whole meters.</altitude>	Terminal response for the left example: REGISTER O(ALTITUDE)=100 The accuracy of the height should be better than ±350 meters.

#	Step description	Illustration / response
16	Set the distance between the TX and RX by entering the following command: #MW 1 <path length=""> For example, for a 15 meter path, the syntax is: #MW 1 15 Note! The length should be in whole meters.</path>	Terminal response: REGISTER 1 (PATH_LENGTH)=15
17	Check the current stored signal strength (absolute transmission) by entering the command: #MR 5	Terminal response: REGISTER 5(ABS_TRANS)=[absolute transmission]
18	Store the current signal strength (optimum alignment) to the transmission reference by entering the following command: #MW 2 <absolute transmission=""> Use the <absolute transmission=""> value received in the step above.</absolute></absolute>	Terminal response: REGISTER 2(TRANS_REF)=[transmission reference]

Check that the absolute transmission is as expected (indicated in the graph below). The obtained absolute transmission can vary somewhat from detector to detector. If the signal is significantly lower than the suggested values, this is an indication that the fine alignment needs to be improved, the RX is poorly aligned or the lenses are dirty. The RX is usually well enough aligned during the Coarse alignment, but this can also be a reason for too low signal.

#	Step description	Illustration / response
19	Save the alignment settings to the system by entering the following command #SAV	Terminal response: IM:OK This saves the current settings, exits Service Mode and initialize (reboots) the system.
Notel After initializing has completed the GD1 will enter Measuring Mode (normal operational mode). The initialization can take up to 5 minutes.		
Note! As a default the zero filter is activated. The zero filter removes any fluctuations below 14 ppm*m (7% FS). So the analogue output will show 4 mA as long as the measurement is below 14 ppm*m.		
	Fine tuning finished!	

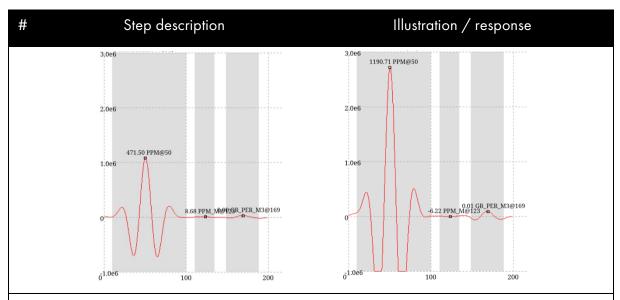
3.4 Function test

Warning! During the test, the GD1 4 - 20 mA output going to control system will be indicating gas when performing the procedure below.

#	Step description	Illustration / response
1	Clean the lenses on the TX and RX as described in section 5.2.	
2	Fill the Test Cell as described in the section 0.	

#	Step description	Illustration / response
3	Position the Test Cell in front of the receiver (RX) as indicated in the figure.	
4	Verify the 4 – 20 mA output. The output should change according to the <u>length</u> of the Test Cell multiplied with the <u>gas concentration</u> . The table below contain some typical values	Expected output value (ppm*m): <length> * <concentration></concentration></length>
	Note! Depending on the precision of the gas mix inside the Test Cell, do not expect to see an exact 1:1 response compared to the test gas concentration.	
	Functiona	l test finished!

	Expected response
	Test Cell (length 0.54 m)
	(ppm*m) ¹
Gas	
concentration	
(ppm)	
50	27
100	54
	100/500/5 11 1/3
185	100 (50% full scale) ²
300	100 (50% full scale) ² 162


- The expected response on the GD1 can be calculated from the following formula:
 Response_GD1 = length_test_cell (meters) * gas_concentration (ppm) + noise
 where the noise normally varies at less than ± 8 ppm*m.
- 2. ** A test gas with approximate 50% full scale response is good practice.

3.4.1 Performing function test with CO₂ as a non-toxic alternative

As a non-toxic alternative to using H_2S for the functional test, the GD1 is also set up to look for a peak in the CO_2 wavelength. This response however, is only available using a Web terminal through the service interface. The CO_2 measurement is not available on the 4-20 mA analogue output.

#	Step description	Illustration / response
1	Clean the lenses on the TX and RX as described in section 5.2.	
2	Fill the Test Cell with CO ₂ as described in the section 0, but with CO ₂ instead of H ₂ S. Recommended CO ₂ test gas concentration is 10 000 – 100 000 ppm (1 %vol - 10 %vol).	
3	Position the Test Cell in front of the <u>receiver</u> (RX) as indicated in the figure.	
4	Verify the response in the GD1 spectrum. The output should change according to the length of the Test Cell multiplied with the gas concentration. Below is an example with 40000 ppm CO ₂ filled into the Test Cell by breath.	Expected output value (ppm CO_2): $ \frac{\textit{C}_{cell}*0.54 + \textit{C}_{air}*\textit{Path_length}}{\textit{Path_length}} $ Where C_{cell} and C_{air} is the CO_2 concentration in respectively the Test Cell and air.

The above spectrum is found in GD1 Web interface. Spectrum to the left showing 472 ppm of CO₂ in the air. To the right a spectrum showing 1 191 ppm as a result of introducing the Test Cell filled with 40 000 ppm CO₂. The value can be verified by using the formula in step 4.

Note! Depending on the precision of the gas mix inside the Test Cell, do not expect to see an exact 1:1 response compared to the test gas concentration.

5	Run loop testing in the Web interface "I/O verification" screen. Recommend to use 60 sec test time. Enter test value. For example 12 mA is 50% of full scale.	I/O Verification Instrument mode Measuring Output I/O-test timeout Forced value Test	
6	After the GD1 goes into "IO Verify" mode, verify that the analogue output matches the test value.	I/O Verification Instrument mode IO Verify Output I/O-test timeout Forced value 12 MA Test	
	Functional test with CO ₂ finished!		

TELEDYNE OLDHAM SIMTRONICS Everywhereyoulook*

4 Operation

The GD1 has no user adjustable parts inside. Do not open the GD1 housing, as this will change the internal atmosphere, and the initial calibration could be affected. Opening the GD1 also voids all warranty offered at the time of sale

The GD1 has no user controls or adjustments (except for the specified HART® settings). Gas reading and fault signaling is given through the 4-20 mA current loop interface.

4.1 Analogue Output Protocol

Condition	Analogue output 11	Analogue output 2 ²	Comment
Normal gas reading ³	4 - 20 mA	0 – 14 mA	4 mA = 0% full scale 20 mA = 100% full scale and higher
Early Dirty Optics Warning (90% signal reduction)	3 mA	2 - 10 %	Detector will still output gas concentration if reading is > 10 % full scale.
Beam block, Alignment mode or Service mode	2 mA	0 - 2 %	Default 60 sec delay before entering beam block. No gas detection.
Fault or Init mode (booting up)	1 mA	Err	No gas detection.
No power	< 0.5 mA	Err	No gas detection.

- 1. The gas reading is clipped at 3.75 mA and 20 mA and will not go outside this range as long as the GD1 is in Measurement mode.
- 2. Relative transmission.

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

3. As a default the zero filter is activated. The zero filter removes any fluctuations below 10 %FS. So the analogue output will show 4 mA as long as the measurement is below 10 %FS.

4.2 Test Cell filling and emptying instructions

When working with Hydrogen Sulphide (H₂S) gas, observe the following:

- H2S is very toxic by inhalation
- Handle and use only in a well-ventilated space
- In case of accident or if you feel unwell, seek medical advice immediately.

Read and understand the filling and discharging instructions before using the Test Cell.

#	Step description	Illustration / response		
No	Note! Maximum allowed overpressure is 100 mbar.			
_	Fit a filler hose from the H ₂ S gas cylinder to one of the valves on the Test Cell. Gas from gas cylinder must be run through an mbar pressure regulator regulating the pressure down to less than 1 barg.			
1	Fit an exhaust hose to the other valve. Exhaust must be released to a safe area or into a suitable ventilator system.			
	Dimension of the valve nozzles are 6.4 mm (1/4") OD.			
2	Open both valves on the Test Cell.			
3	Start the filling of H ₂ S from the gas bottle to the Test Cell. With a gas flow of 3 liter/minute, wait for approximate 2 minutes. For a lower gas flow filling time has to be increased accordingly. For example for a flow of 1 liter/minute a filling time of 6 minutes is required. Too short filling time will result in the gas reading being lower when performing Function test.			
4	Close the gas bottle.			
5	When the gas stops flowing, quickly close both valves on the Test Cell.			
6	Disconnect the Test Cell from the hoses.			
Note! After filling, the Test Cell will only be able to hold the gas at a reliable concentration for a limited amount of time (few days). Replenish or refill the cell if the concentration is suspected to have dropped.				
Filling of Test Cell finished!				

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

THIS PAGE LEFT INTENTIONALLY BLANK

5 Maintenance

5.1 Regular maintenance

The detector does not have any internal functions that require regular monitoring or maintenance. Regular maintenance consists only of cleaning the optics.

The GD1 has no user adjustable parts. Do not open the GD1. Opening the GD1 voids all warranty offered at the time of sale. The manufacturer shall do all repairs. Please refer to the general warnings in chapter 7.

5.2 Cleaning of optical surfaces

Take care not to scratch the lenses and optical coating while cleaning.

- 1) First remove dust, sand, or other hard minerals using a soft brush or cloth, bulb blower or dry and clean compressed gas or air. If using a compressed air gun or a cloth, use it very lightly.
- 2) Spray the lens with a dilute solution of mild (dishwasher) detergent and water. It is a good idea to first spray richly and let the cleaner dissolve some dirt and let it drip off naturally. Repeat if necessary. If the dirt is still sticking a stronger solvent might be required, a 1:1 mix of isopropyl alcohol and water can be used.
- 3) Wipe the lens lightly and carefully with a clean microfiber cloth or a lens cloth, repeating step 2) and 3) until the surface is clean. Cotton swabs / Q-tips can be used as an alternative.
- 4) Rinse with water and wipe dry.
- 5) Do not touch the lenses with your fingers.

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

THIS PAGE LEFT INTENTIONALLY BLANK

6 Troubleshooting

TELEDYNE OLDHAM SIMTRONICS shall do all service and repairs. Troubleshooting should be performed by the used as described below.

The detector can also give fault messages if the mounting brackets are not sufficiently stable over time, for example with temperature changes or passing trucks resulting in the GD1 coming temporarily out of alignment. Before troubleshooting is commenced the rigidity of the mounting structure should be checked.

The most common issues are the following:

- Misinterpretation of ppm*m as ppm. Described in section 10.4.
- <u>Poor alignment</u>. Please be aware that it is the absolute transmission that should be optimized, not the relative transmission (section 3.3).
- Interference from a second transmitter as described in section 6.3.

Troubleshooting should always start by inspecting the detector's lenses for contamination and/or defects. The following list may be helpful:

Issue	Possible source of problem	Suggested correction
Clean optics	Dirt on lens.	Clean optics (see section 5.2).
warning (3 mA)	Detector out of alignment.	Realign detector (see chapter3.3).
	Dirt on lens.	Clean optics (see section 5.2).
	Detector out of alignment.	Realign detector (see chapter 3.3).
Beam block (2 mA)	Objects that block the measuring path.	Remove objects that block.
	Detector in alignment or service mode	Reboot detector by Service Interface (Ethernet), HART®, or by cutting/reconnecting power.

Issue	Possible source of problem	Suggested correction
Fault (1 mA)	Check error code in the Service interface Status screen.	See section 6.1 for a description and suggestion on how to solve the issue.
No Power		Verify with multi meter in the Junction box that detector has power.
(O mA)	No power to the detector.	Check both detector and system cable wires on terminal 1 and 2 in the junction box.
	Not connected to network	Make sure your browser is connected to the GD1 wireless network.
No wireless or cable	Loose connector	Check that the terminal adapter is securely connected to terminals 3 – 6
Ethernet connection	Loose wire in Junction Box	Check terminals 3 – 6. Unscrew each wire, both internal and external wiring to the terminals, and ensure wires are properly connected to the terminals.
	Fault on cable	Check cable.
No Ethernet cable	Device not set up to connect to fixed IP address	Configure laptop network settings to connect using static IP.
connection	Fault in detector	Contact TELEDYNE OLDHAM SIMTRONICS.
Fluctuating	Noisy signal	Tune alignment as described in section 6.2.
H ₂ S level	Interfering detector	See section 6.3.
	Check error code in the Web Service or by HART®.	See section 6.1 for a description and suggestion on how to solve the issue.
Other error		Note! After solving an issue the Error code might still be displayed for some time.
Absolute	Dirty optics	Clean optics
transmission not as high as	Alignment of TX not optimum	Perform tuning of TX as described in section 3.3.
expected during alignment	Alignment of RX not optimum	Perform tuning of RX with the same method as for TX described in section 3.3.

Issue	Possible source of problem	Suggested correction
	Laser beam obstructed by an	Move the obstructing object or the
	object	GD1.

6.1 Error codes

Error codes are obtained by entering the Status screen through the Service Interface. After an error has been corrected, it can still be displayed in the Status screen in the Service interface.

Error #	Description	Action
1-4	Only relevant for vendor.	Contact TELEDYNE OLDHAM SIMTRONICS.
5	Issue with communication between TX and RX.	Check wiring. See actions on error 22.
6-7	Only relevant for vendor.	Contact TELEDYNE OLDHAM SIMTRONICS.
8	Issue booting up the receiver.	Check wiring. See actions on error 22.
9-13	Only relevant for vendor.	Contact TELEDYNE OLDHAM SIMTRONICS.
14	Beam block. Possibly laser from TX is obstructed by an object or alignment need to be improved.	Remove blocking object or improve alignment.
15	High transmission. Relative transmission > 125%.	Redo alignment. Make sure lenses are clean before aligning
16	Timeout. Initialization took too long time.	Reboot the detector. Contact TELEDYNE OLDHAM SIMTRONICS if Error persists.
17	Unable to track the CO ₂ line	Too short path length. Distance between TX and RX shall be 5 meters or more.
17	Not able to find the CO line during CO verification.	Contact TELEDYNE OLDHAM SIMTRONICS.
18-21	Hardware error.	Contact TELEDYNE OLDHAM SIMTRONICS.
	No contact with RX. Possible poor	Check power on RX.
22	electrical connection in the Junction Box or no power at RX.	Check wiring on terminals 1, 2, 11, 12 in both TX an RX Junction Box.
23-31	Hardware error.	Contact TELEDYNE OLDHAM SIMTRONICS.

32	detector might be too hot for the laser	Disconnect power, cool down the detector and reboot.
33-40	Software error.	Restart the detector by turning power off and on again. If problem persists please contact TELEDYNE OLDHAM SIMTRONICS.

6.2 Tuning detector for less noise

It is normal to see fluctuations of the H_2S signal below \pm 8 ppm*m. This is due to noise in the measurement. Several effects can influence the noise in the H_2S measurement such as: Alignment between RX and TX, dirt on lenses, rain, sandstorm, snow, reflections and interference from other detectors. The interference from another detector will typically be observed as sudden high values of H_2S , and is described in section 6.3.

To tune for less noise on the GD1 the alignment can be adjusted slightly, as described in the procedure below:

#	Step description	Illustration
1	Clean the lenses of both transmitter (TX) and receiver (RX) for any dirt before proceeding. The optical path should be clear at the time of aligning (avoid fog, mist, steam, rain, snow, etc.).	
2	Log into the service interface with Ethernet connection or HART®.	RX 1

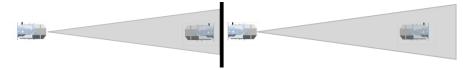
#	Step description	Illustration
3	Observe H ₂ S level and signal strength on the Web Interface Status screen, or with a mA-meter on terminal 7 (H ₂ S signal) and 8 (signal strength). It is normal for the H ₂ S signal to fluctuate up to ± 8 ppm * m.	Instrument mode Measuring Relative transmission 100.04 Absolute transmission 2.13 Measurement status 0x0000 Error code 0 Process path length 50 m Height above sea level 100 m Transmission reference 2.12546 Outputs: H2S 17.29 ppm*m REL.TRANS 99.97 %
4	Loosen only screw 1 or 2 for adjustment in respectively the horizontal (screw 5) or vertical (screw 4) direction. Adjust detector slightly with screw 5 or 4	3
5	for respectively horizontal or vertical direction.	
6	Observe that H ₂ S fluctuations stay within ± 8 ppm*m. It can take up to a minute for the noise signal to stabilize. Preferably, the relative transmission should not drop below 90% during this tuning. If the signal is OK and relative transmission did not drop too much, continue to the step 9.	Instrument mode Measuring Relative transmission 94.61 Absolute transmission 2.01 Measurement status 0x0000 Error code 0 Process path length 50 m Height above sea level 100 m Transmission reference 2.12546 Outputs: H2S 0.51 ppm*m REL.TRANS 94.58 %
7	If the signal still needs tuning go back to step 6. If it is not possible to get low fluctuations by tuning in the current direction without going below 90% relative transmission, go back to step 5 and start adjusting in another direction.	
8	Make sure <u>screw 1 and 2</u> are tightened.	

#	Step description	Illustration	
9	Go into the COMMISSIONING → ALIGNMENT screen and set the detector in "Alignment mode". Then store the new relative transmission by clicking DONE and SAVE.		
10	Go to the Status screen to verify the detector is in Measurement mode and noise level is OK.		
	Tuning noise finished!		

6.3 Interference from another GD1

Interference from other detectors is observed as sudden very high values of H₂S. This can occur if the laser from more than one transmitter is picked up by the same receiver. In the image below this effect is illustrated where two transmitters are emitting into one receiver.

Below is a simple solution to prevent interference from another transmitter. The position of transmitter and receiver is swapped so the laser beams are going in opposite directions. This solution will not work if there are many GD1's positioned in a line.



Below a second possible solution is illustrated. In this example several GD1's are positioned so the laser beam does not affect other detectors.

If it is not possible to organize the detectors so they will not interfere, there is a third solution as illustrated below. A sufficiently large physical barrier, here in form of a small plate, between the GD1's so that they cannot interfere with each other.

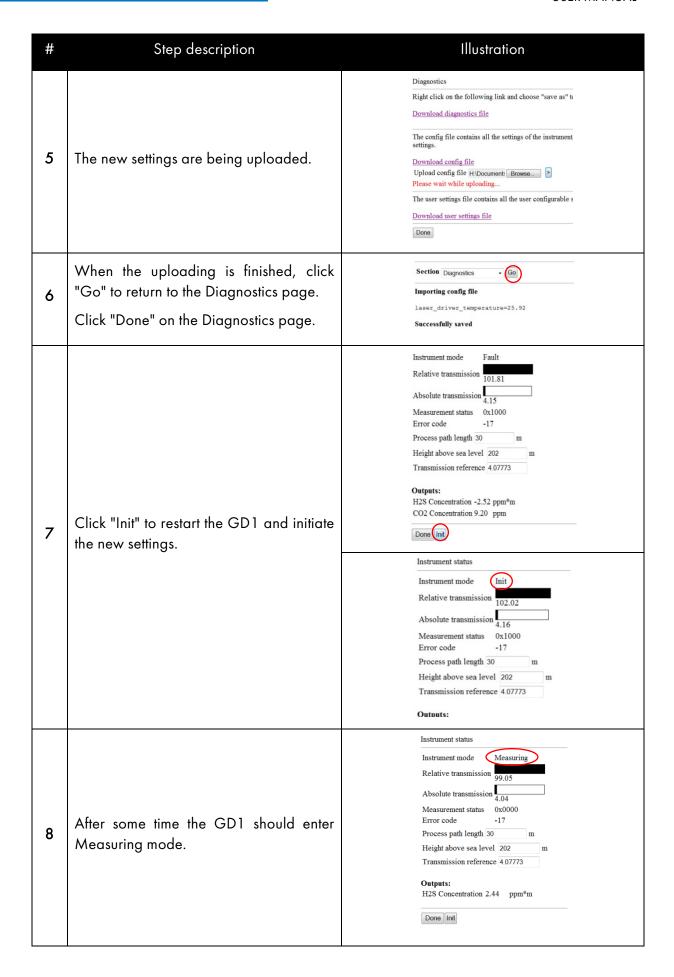
NOTE: In some rare cases, even though the interfering transmitter is mounted behind the receiver from the noisy detector, the laser can be reflected back into the detector by a reflective surface (e.g. sign, structural plate metal).

6.4 Download the Diagnostics file

A diagnostics file is required when contacting TELEDYNE OLDHAM SIMTRONICS or its authorized distributors for support. The diagnostics file contains information concerning serial number, the present settings and errors in the instrument. Follow the instructions to download a diagnostics file:

- 1. Connect to the GD1 with the Ethernet or wireless connection and use a Web browser to log into the GD1 Service Interface on http://192.168.1.237.
- 2. Enter the Diagnostics page.
- 3. Right Click "Download diagnostics file" and select "Save Target As..." or "Save Link As", depending on what type of browser being used.
- 4. Store the file to a disc. In the file name please use the site detector ID tag number.
- 5. Click Done to return to main menu
- 6. Send the diagnostics file to TELEDYNE OLDHAM SIMTRONICS support.

6.5 Uploading a Configuration file


TELEDYNE OLDHAM SIMTRONICS can create an encrypted settings file that on upload to the GD1 can change critical detector settings. This can be used in situations where the customer requests a settings change, for example changing the span of the detector. The file is encrypted to avoid non authorized persons changing critical settings. It is important to ensure that the Configuration file belongs to the actual instrument at hand. Follow the procedure below to upload a settings file:

NOTE: It is recommended to back up the initial Configuration file, by downloading it from the instrument. If needed, this file can later be used to reset the GD1 back to the original state. The Configuration file is downloaded on the Diagnostics page in the Service interface.

#	Step description	Illustration
1	Connect to the GD1 Service Interface as described in section 10.5. IP address: http://192.168.1.237	Service interface Service interface Windows Internet Explorer Service Windows Internet Explorer Service Windows Windows Internet Supposed Steel Pree Hotmal Service Service Supposed Steel Pree Hotmal Service Service Supposed Steel Pree Hotmal Supposed Steel
2	Enter the Diagnostics page. Click "Download config file" and store this in a safe place. This file can be used later to go back to the original settings if necessary.	Diagnostics Right click on the following link and choose "save as" Download diagnostics file The config file contains all the settings of the instrumen settings. Download config file Upload config file Browse. The user settings file contains all the user configurable Download user settings file Done
3	Click "Browse" to find the new settings file.	Choose Flat to Updated
4	Click the arrow to start uploading the file to the GD1.	Diagnostics Right click on the following link and choose "save as" t Download diagnostics file The config file contains all the settings of the instrument settings. Download config file Upload config file H\Document: Browse The user settings file contains all the user configurable: Download user settings file Done

48

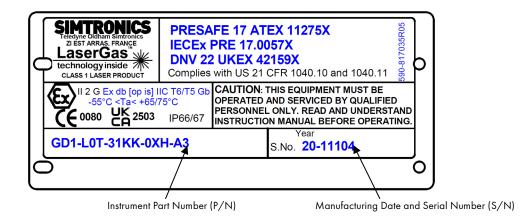
TOXIC OPEN PATH GAS DETECTOR **USER MANUAL**

#	Step description	Illustration		
Configuration upload finished!				

TELEDYNE OLDHAM SIMTRONICS Everywhereyoulook P/N: 850-816926 EN Revision 8b

7 Certifications and standards

7.1 Certification

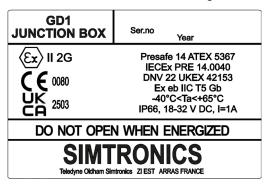

The GD1 gas detectors comply with the requirements of:

- European Directive ATEX. See UE Declaration
- UK ATEX: SI . See UK Declaration

relating to gas explosive atmospheres.

7.2 Marking

The GD1 product identification labels are shown in the figure below. The composition of the labels is in accordance with ATEX Directive.



NB! Please refer to full serial number (2+5 digits) for factory enquiries, service or support.

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

The GD1 JB product identification labels are shown in the figure below.

7.3 Specific condition for use in Explosive Atmosphere "X"

"X"- Flameproof joints have values different from those specified in the tables of standard EN 60079-1. TELEDYNE OLDHAM SIMTRONICS does not allow repairs and disclaims any responsibility for material modifications.

The threaded joints may be lubricated to maintain flameproof protection. Only non-hardening lubricants or non-corrosive agents having no volatile solvents may be used.

"X"-The fasteners used on the Ex-d enclosure must be of the type specified by the manufacturer M6x10, yield stress min. 500MPa.

"X"-The Cable gland may not provide sufficient clamping. User shall provide additional clamping of the cable to ensure that pulling and twisting is not transmitted to the terminations.

For use in explosive atmosphere, cable glands and blanking plugs shall be ATEX and IECEx certified « db ».

"X"-The measuring function according to Annex II paragraph 1.5.5 of the Directive is not covered by this EU-type examination. It shall comply with the requirements from the relevant European harmonized standards which provide guidance on the performance of gas detection equipment and safety devices.

This device is not intended to be used for safety purpose against explosion hazard.

8 Accessories and spare parts

Accessory	Part Number	Description		
	GD1-X00-TT06	Alignment Kit		
		Suitcase with Laser alignment tools, Alignment Interface Unit and carry case.		
	GD1-X00-TT05	Gas Test Cell Kit – long version		
		Airtight chamber for function and calibration tests. The chamber has a length of 54 cm.		

Spare part	Part Number	Description		
n()	499-816526	Junction box		
		(temperature range -40 to +65°C)		
	GD1-X00-TB01	Mounting plate		
499-816755		Adjustment bracket		
245-906385		Alignment kit laser pointer		

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

Spare part	Part Number	Description			
	499-817033	Alignment kit reflector plate			
and statement	499-816845	Wireless router			
	419-906123	Laser glasses			
	814-816855	Spare screws and nuts for the GD1.			
	700-816859	All typical tools needed for alignment and service of the GD1.			

8.1 Ordering information for the GD1

Model					I	Descrip	tion	
GD1	-LO*	-31	* *	-OX	*	-A3		
	Р	Transmitter and Receiver						
	Т	Transmitter only						
	R	Receiver only						
		31 H ₂ S						
			KH	0 – 200 ppm*m scale				
				0 – 500 ppm*m scale				
			KK	0 – 1 000 ppm*m scale				
			KL	0 – 2 000 ppm*m scale				
K			KM	0 – 5 000 ppm*m scale				
KN 0 - 10 000 ppm*m scale			scale					
				OX SS316 / ATEX				
					Н	4-20 mA source interface + HART®		
					J	J 4-20 mA sink interface + HART®		
					A3	Mark III		
GD1	-LOP	-31	KH	-OX	Н	-A3	Typical Part Number	

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

THIS PAGE LEFT INTENTIONALLY BLANK

9 Technical Specifications

GENERAL

Detection method Near IR laser scanning

IR-Source Tunable laser diode

Laser Class 1, eye safe

Detected gas H2S

Range 0 - 200 ppm *m (default)

Path length 5 - 75 m

Self-test Continuous

Calibration Factory set, no field recalibration

Safety Integrity Level 2 (Functional test interval of once per year)

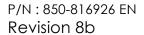
PERFORMANCE

Accuracy < ±8 ppm*m (<±4% of full range)

Repeatability $< \pm 8 \text{ ppm*m} (< \pm 4\% \text{ of full range})$

Response time 5 sec.

OPTICS


Alignment ±0.3°

Optics Heated (Transmitter and Receiver)

Obscuration >98% to signal Beam block (2 mA)

Optional: Warning (3 mA)

>90% to signal "Early clean optics"

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

OUTPUT SIGNAL

Standard 4-20 mA sink or source (factory set),

max. load impedance 500 Ω ,

HART®

Fault signals Fault 1 mA

Beam block 2 mA

Option: Warning 3 mA

Zero filter The "Zero filter" is by default set to filter any noise/measurement

below 10 % Full Scale.

ELECTRICAL

Power supply 24 V DC nominal, range 18-32 V DC

Power consumption < 15 W (RX: <5W + TX: <10W)

Cable entry M25¹

System fuse Power to the GD1 shall be protected by 1A fuse

TEMPERATURE RANGE

Operating -55°C to $+65^{\circ}\text{C}$ (-67°F to +149°F)

ATEX Flameproof -55° C to $+75^{\circ}$ C (-67° F to $+167^{\circ}$ F)

IECEx Flameproof -55° C to $+75^{\circ}$ C (-67° F to $+167^{\circ}$ F)

ENVIRONMENTAL

Ingress protection IP66 / IP67 IEC 60529

Humidity (operation) 0 - 100% RH

Humidity (storage) 0 – 95% RH

¹ Junction box is supplied with two M25 plugs. The supply of M25 cable glands for wiring is the responsibility of the customer

TELEDYNE OLDHAM SIMTRONICS Everywhereyoulook~

MECHANICAL

TX and RX Housing:

- Material Stainless steel (ASTM 316)

Cable gland Nickel plated Brass (by default)

- Weight 6 Kg (12 lbs) (each)

- Dimensions Ref outline drawing

Junction Box:

- Material GRP


Cable gland Nickel plated Brass (by default)


- Weight 2.0 Kg (4.4 lbs) (each)

- Dimensions Ref outline drawing

Total assembly weight 12 kg (26 lbs) (Tx or Rx + JB + bracket + plate)

OUTLINE DIMENSIONS

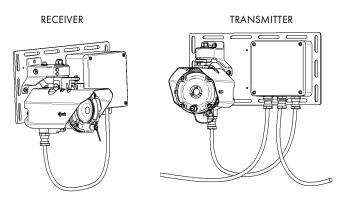
TOXIC OPEN PATH GAS DETECTOR USER MANUAL

THIS PAGE LEFT INTENTIONALLY BLANK

10 System description

The SIMTRONICS GD1 sets a new standard for toxic gas detection. Using a tunable laser diode, the GD1 delivers enhanced coverage and fail safe detection. The performance improvement marks a major step for safety systems and life cycle cost savings.

The GD1 has been designed with features that provide an effective response to the detection of gas hazards in a wide range of industrial environments from offshore production facilities to wastewater treatment plants.


At the heart of the detector is a tunable laser diode that eliminates environmental effects from sun, rain and fog. The laser scans single absorption lines where there is no cross-interference from other gases. The laser operates in the near infrared wavelength region, and is invisible to the naked eye. The GD1 laser is eye safe, and does not present any danger even if looked straight into.

Unlike traditional methods for detecting H_2S , MOS or EC cell, the GD1 needs no recalibration and can replace multiple standard detectors to cover the same potential leak area.

The measurement technique used in the GD1 is intrinsically a baseline-free technique. Therefore, a calibration of the zero level is never done. The complete optomechanical design and construction is so stable that an ultra-fast speed of response can be achieved whilst providing unparalleled service life and detector stability, thus saving on maintenance and service costs.

10.1 System

The GD1 is an optical open path Gas Detector with a separate transmitter (TX) and receiver (RX). The transmitter emits infrared laser light which is detected by the receiver. The detection principle is based on measuring the absorption of light by the free gas molecules present in the measuring path.

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

In contrast to traditional hydrocarbon open path detectors which emit broad-banded light, the GD1 uses a tunable diode laser (TDL) as its light source and emits light at a very narrow bandwidth. This technology enables high-resolution spectroscopy and the ability to measure absorption from single absorption lines, eliminating direct interference from other gases and subsequent false gas alarms.

The laser diode has a very long service life and requires no recalibration or replacement.

The GD1 technology enables ultra-fast detection to single gas species at low concentrations. The laser diode is tuned in wavelength and temperature to match the absorption line to be measured. The laser is then scanned across the absorption line. The line itself is carefully selected to ensure there is no interfering absorption in the scan area.

The GD1 continuously monitors the measuring path and the optical and electronic functions. The detector will always show correct gas concentration as long as there are no error messages.

The transmitter and receiver optics are heated to keep the optical surfaces free from dew, snow and ice.

Maintenance will normally only consist of cleaning the optics. The detector gives an error message if cleaning is required.

The GD1 offers digital communication capabilities along with standard 4-20 mA analogue current loops, to aid installation, setup, configuration and servicing.

10.2 Application areas

Area monitoring of:

- Oil and gas installations onshore and offshore
- Petrochemical plants
- Chemical plants
- Refineries
- Pipelines
- Marine
- Waste disposal plants
- Process water facilities
- General industry

10.3 Positioning considerations

Open path detectors are more susceptible to external interference compared to point detectors. To avoid performance reduction and downtime, the following should be taken into consideration when choosing mounting location.

The detector should be attached to a mechanically rigid structure to help keep the unit in alignment due to influences such as:

- Thermal movement due to the effects of the sun and temperature changes
- The effects of strong wind, vibration from equipment such as pumps, turbines and cranes, high-pressure flushing of the detector etc.
- Other mechanical effects, particularly in high-traffic areas.

The measuring path should be horizontal to minimize environmental effects such as rain and snow. Other factors to be taken into account could be temporary scaffolding, large vehicles etc.

10.3.1 General positioning considerations regarding a gas cloud

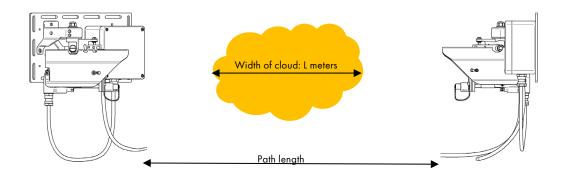
The concentration of a gas cloud rapidly reduces as the distance from the leak source increases. The detector should therefore be placed as close as possible to potential leakage sources. Normally prevailing wind directions must be taken into account when positioning the detector.

Positioning height of the detector should also be taken into consideration. H_2S is heavier than air and has a tendency to accumulate in low areas. Due to the H_2S being heavier than air the detector should normally be positioned at low heights.

In places where there can be thick fog or heavy snowdrifts it is recommended to keep the measuring path as short as possible.

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

Even if GD1 is practically solar blind, positioning the measuring path in a North – South direction is preferable to avoid direct sunlight.


The performance of an Open Path gas detector is influenced by:

- Distance from leak source
- Weather and environmental conditions
- Temporary or permanent path obstruction
- Leakage characteristic (pressure, size, fluid, temperature)
- Gas density (heavier or lighter than air)
- Vibration and stability of mounting structure
- Exhaust or steam discharges hitting the optics.

The detector should be placed according to a gas dispersion analysis taking into account all the factors above.

10.4 Detection principles

Unlike a point detector, the GD1 Open Path Detector will not measure the concentration of the gas in the path between transmitter and receiver. The GD1 measures the total amount of H_2S in the path and the value returned by the GD1 is in ppm*m. Below are three examples with calculations on what value is expected on the GD1 for different gas clouds.

The drawing above illustrates a GD1 positioned with a gas cloud from a H_2S drifting into the laser beam of the GD1. The average concentration of the gas cloud is C ppm H_2S . The width of the gas cloud is L meters where the beam is crossing. If the path length is smaller than the gas cloud, the distance L will be equal to the path length. For the gas cloud in this example, we would expect the following signals from the GD1:

Example 1 - gas cloud characteristics: C = **5 ppm; L = 15 meters**Expected measurement of the GD1 = C * L = 5 ppm * 15 m = **75 ppm*m**

Example 2 - gas cloud characteristics: C = 10 ppm; L = 15 meters

Expected measurement of the GD1 = C * L = 10 ppm * 15 m = 150 ppm * m

Example 3 - gas cloud characteristics: C = 150 ppm; L = 1 meters

Expected measurement of the GD1 = C * L = 10 ppm * 15 m = 150 ppm * m

Observation 1! Same cloud size will give same measurement irrespective of path length (this provided that the gas cloud is smaller than the path length).

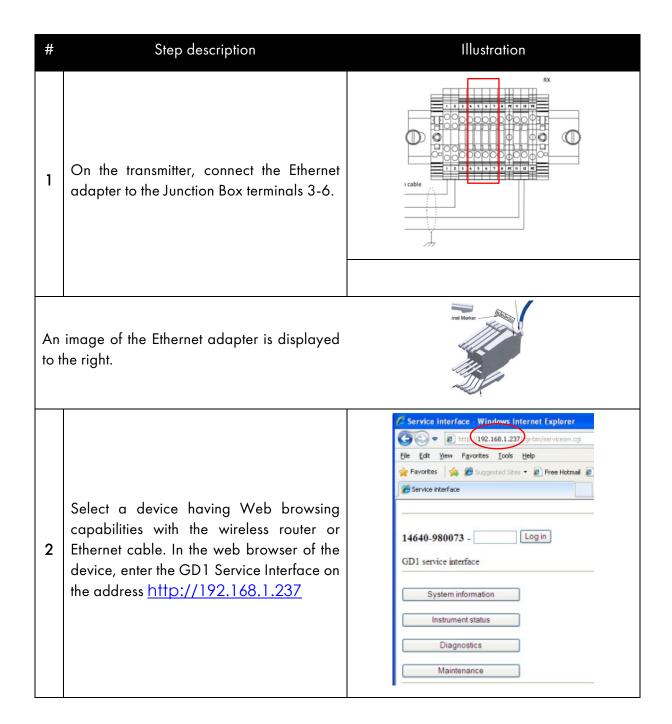
Observation 2! If cloud size is known, the average cloud concentration can be calculated by dividing the ppm*m measurement with path length. This can typically be done only if a spreading analysis shows that the cloud always will cover the whole path length between the TX and RX, for example if the GD1 is placed sufficiently far from the leak point.

Observation 3! Example 3 shows that different cloud can give same measured value. Therefore the GD1 is typically used as a "safe fence" around an installation to signal if there is an abnormal and potentially unsafe situation, and not to measure the actual concentration of the gas.

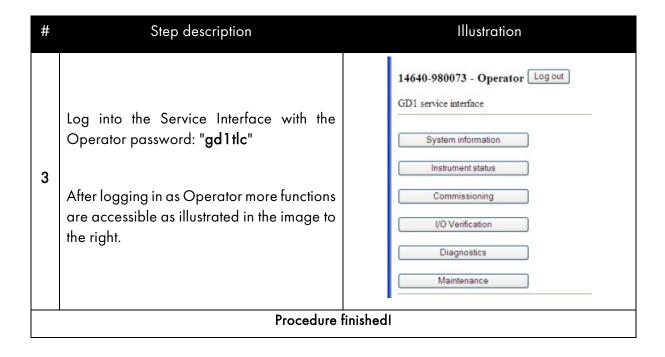
10.5 How to connect to the web interface with the Ethernet cable

In some circumstances it might be requested by the user to be able to connect with cable and not the Wireless router. Below is a description on how to connect to the GD1 Service Interface with a web browser:

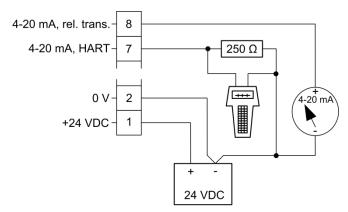
Note! When connecting with the Ethernet cable, it is necessary to configure the network interface card to static IP and the following settings:

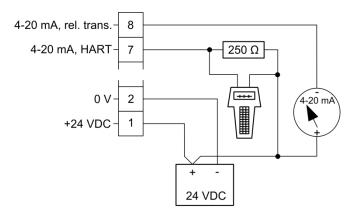

IP address 192.168.1.236

Subnet mask 255.255.255.0


Default gateway 192.168.1.253

64





10.6 HART® Interface

GD1 detector supports generic HART®. For access to the detectors HART® features, connect an industry standard HART® communicator as shown in the following figures depending on the type of analogue interface (source or sink).

HART® terminal connection for source variant

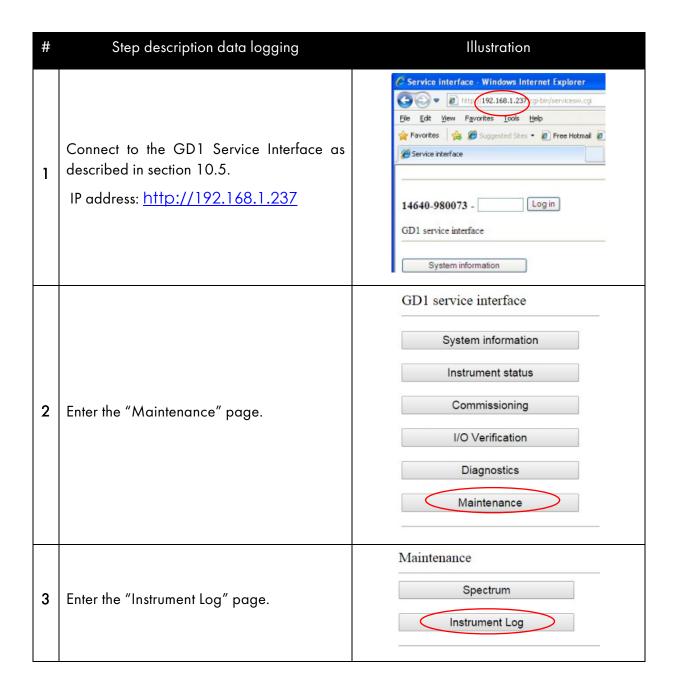
HART® terminal connection for sink variant

HART® commands for alignment and commissioning are described in section 3.3.2. The following sections describe some of the HART® commands/functions supported by the GD1:

TELEDYNE
OLDHAM SIMTRONICS
Everywherevoulook*

10.6.1 Overview HART® menu

Item	Description					
	•					
PV	Primary Value. H₂S reading in ppm*m.					
PV URV	PV Upper Range Value					
PV LRV	PV Lower Range Value (always zero)					
PV loop current	Primary Value. H ₂ S reading in mA (4 mA zero gas reading and 20 mA for PV URV gas reading).					
Configuration→						
Configuration→Setup→						
Altitude	Installation altitude. This shall have an accuracy better than ± 350 meters					
Path length	Distance between transmitter and receiver. This value does not impact on the PV readings.					
Transmission reference	Transmission reference					
Commit GD1 settings	Stores the altitude, path length and alignment settings.					
Configuration -> Device-)					
Mode	What mode the detector is in.					
RX serial number	Receiver manufacturing number.					
TX serial number	Transmitter manufacturing number.					
Software version	Software version.					
Configuration→Device→HART→						
Configuration→Device→HART→HART output						
PV URV	Primary value upper range.					
PV LRV	Primary value lower range.					
Loop current mode						
Num resp preams						



Configuration→Device→HART→Installation data							
Long Tag	Open for editing by user.						
Tag	Open for editing by user.						
Descriptor	Open for editing by user.						
Date	Open for editing by user.						
Configuration→Device→HART→ Revision #'s							
Final assembly num							
PV Snsr s/n							
Fld dev rev							
Software rev							
Hardware rev							
Measurements->							
Mode	Detector mode (FAULT, MEASUREMENT,)						
H ₂ S reading	H₂S gas reading in ppm*m.						
Relative transmission	Relative transmission.						
CO2 reading	CO2 gas reading in ppm.						
Measurements→ Device	status						
Status	Status of the detector such as "Measurement" and "Fault"						
Failure flags Meas	Failure information						
Failure flags Fault	Failure information						
Ext dev status	Failure information						
Instrument error codes	Error code. See section 6.1 for details.						

10.7 Data logging functionality

The GD1 has 24 MB of space reserved for storage of data chosen by the user. The user can specify at what interval the data shall be recorded and stored. The data log can be downloaded for review of for example gas releases recorded during the latest months. The GD1 can typically store several years of data logging before it is starting to overwrite the oldest data entries.

#	Step description data logging	Illustration
4	In the "Instrument Log" page the operator set up what data should be logged and at what interval. Up to six data variables can be logged and is chosen from a drop-down menu as shown below. Data sources Source CONC1 CONC2 CONC3 CONC4 MODE TRANS_ABS TRANS_REL LTEMP_DEV LTEMP_DEV LTEMP_DEV LTEMP_DEV LTEMP_DEV LTEMP_DEV LTEMP_SEXT_PRESSURE EXT_TEMPERATURE	Set up how to perform the logging, and press Start. If Continuous logging is set to 0, the logging will stop once the is full. If Continuous logging is set to 1, logging will continuous the oldest data until it is stopped. Restart will delete the internal buffer and restart the logging. Sample data every
5	Click "Start" to start logging the selected variables in the previous step.	Internal log size 20971552 bytes Instrument time 1970-01-01 18:15:11 Log last updated 1970-01-05 05:23:08 Refresh Logging control Start Stop Restart Download internal log file
6	The data log can be downloaded by clicking the "Download the internal log file". Data being downloaded.	Internal log size 20971552 bytes Instrument time 1970-01-01 18:45:50 Log last updated 1970-01-05 05:23:08 Refresh Logging control Start Stop Restart Download internal log file Done usertog.csv 373 x8
7	Data log is exported in CSV format and car program as shown below.	n then be imported and viewed in a suitable

#	# Step description data logging				Illustration				
		А	В	С	D	Е	F	G	Н
	1	#FILE	CONC1	CONC2	CONC3	CONC4	TRANS_REL	LTEMP	
	2	08.07.2015 16:57	7.768	68.8692	0.0831	5.0198	68.8692	31.2091	
	3	08.07.2015 16:57	7.768	68.8692	0.0831	5.0198	68.8692	31.2091	
	4	08.07.2015 16:57	6.9521	68.4236	0.1178	5.0253	68.4236	31.2089	
	5	08.07.2015 16:57	7.768	67.9025	0.1276	5.0206	67.9025	31.2089	
	6	08.07.2015 16:57	7.8616	67.3983	0.1696	5.0216	67.3983	31.2088	
	7	08.07.2015 16:57	5.1733	67.001	0.1553	5.0302	67.001	31.2088	
	8	08.07.2015 16:57	4.3574	66.5638	0.172	5.0432	66.5638	31.2087	
	9	08.07.2015 16:57	7.6743	66.091	0.2263	5.0381	66.091	31.209	
	10	08.07.2015 16:57	6.9735	65.5552	0.1821	5.0372	65.5552	31.209	
	11	08.07.2015 16:57	6.9735	65.5552	0.1821	5.0372	65.5552	31.209	
	12	08.07.2015 16:57	0.8586	64.9389	0.1343	5.0417	64.9389	31.2088	
	13	08.07.2015 16:57	0.8052	64.4546	0.1376	5.0549	64.4546	31.2088	
			Data lo	gging	comp	leted	•		

GD1 MK3

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

THIS PAGE LEFT INTENTIONALLY BLANK

11 Support and contact details

You will find sales and technical information on our website at www.teledynegasandflamedetection.com

Email address for general enquiries: gasandflamedetection@teledyne.com

Phone: +33 (0)3 21 60 80 80

11.1 Shipping instruction sending units to support

In case of shipping a GD1 to support please follow the procedure below:

- 1. Download and save the Diagnostics file as described in section 6.4.
- 2. Prepare an e-mail with additional important information collected during the troubleshooting and the following information:
 - Unit serial number
 - If available, support reference number
 - Short description of the error or problem
 - A list of all items to be packed in the box
 - Contact information with telephone number and e-mail address
- 3. Attach the Diagnostics file to the e-mail.
- 4. Send the e-mail to support.
- 5. Print the e-mail.
- 6. Turn off the power of the instrument.
- 7. Dismount the instrument. Do NOT remove the optical housing or the junction box from the mounting plate.
- 8. Put the complete GD1 with mounting plate in a protected packing box.
- 9. Put the printed e-mail in the packing box.
- 10. Mark the packing box with the following information:
 - Unit serial number
 - Sender
- 11. Ship the transmitter unit package to support at:

TELEDYNE OLDHAM SIMTRONICS
R2 Repair Department
ZI Est - Rue Orfila
62027 ARRAS Cédex
FRANCE

GD1 MK3

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

THIS PAGE LEFT INTENTIONALLY BLANK

12 Declaration of conformity

DECLARATION UE DE CONFORMITÉ

EU CONFORMITY DECLARATION

Réf : UE_GD1_rev6a.doc

Nous We. Teledyne Oldham Simtronics S.A.S., ZI Est, 62000 Arras France

Déclarons, sous notre seule responsabilité, que le matériel suivant : Declare, under our sole responsibility that the following equipment :

<u>Toxic Open Path Detector GD1</u> Barrière linéaire pour gaz toxiques GD1

Est conçu et fabriqué en conformité avec les Directives et normes applicables suivantes : Is designed and manufactured in compliance with the following applicable Directives and standards:

I) Directive ATEX 2014/34/UE dated from 26/02/14: Explosive Atmospheres

Directive Européenne ATEX 2014/34/UE du 26/02/14: Atmosphères Explosives

Harmonized applied Standards EN 60079-0 : 2018
Normes harmonisées appliquées EN 60079-1 : 2014
EN 60079-28 : 2015

EU type examination certificate: *Attestation UE de Type du matériel*

Presafe 17 ATEX 11275 X

Category (catégorie) / Marking (marquage):

GD1 detector (modèle GD1)

⟨Ex⟩ _{II 2 G}

Ex db [op is] IIC T6/T5 Gb

Production Quality Assurance Notification: Notification Assurance Qualité de Production

INERIS 00ATEXQ403

Issued by the Notified Body n°0080:

Délivré par l'Organisme notifié numéro 0080

INERIS, Parc Alata 60550 Verneuil en Halatte France

II) European Directive EMC 2014/30/UE dated from 26/02/14: Electromagnetic Compatibility

Directive Européenne CEM 2014/30/UE du 26/02/14: Compatibilité Electromagnétique

Harmonized applied Standard: EN 50270 : 2015 for type 2

Ce matériel ne doit être utilisé qu'à ce pour quoi il a été conçu et doit être installé en conformité avec les règles applicables et suivant les recommandations du fabricant.

This equipment shall be used for the purpose for which it has been designed and be installed in accordance with relevant standards and with manufacturer's recommendations.

A Arras, 02/12/2021 / Arras on December 02nd, 2021

Teledyne Oldham Simtronics S.A.S.

Z.I. EST - C.S. 20417 62027 ARRAS Cedex – FRANCE Tel.: +33(0)3 21 60 80 80 www.teledyneGFD.com AM. Dassonville Certification Responsible

Dasil

Page 1 | 1

DECLARATION UE DE CONFORMITÉ

EU CONFORMITY DECLARATION

Réf: UE_JB_rev4a.doc

Nous. We,

Teledyne Oldham Simtronics S.A.S., ZI Est, 62000 Arras France

Déclarons, sous notre seule responsabilité, que le matériel suivant : Declare, under our sole responsibility that the following equipment:

Junction box Boîte de raccordement

Est conçu et fabriqué en conformité avec les Directives et normes applicables suivantes : Is designed and manufactured in compliance with the following applicable Directives and standards:

I) Directive ATEX 2014/34/UE dated from 26/02/14: Explosive Atmospheres

Directive Européenne ATEX 2014/34/UE du 26/02/14: Atmosphères Explosives

Harmonized applied Standards

Normes harmonisées appliquées

EN 60079-0: 2018

EN 60079-7: 2015 / A1: 2018

EU type examination certificate: Attestation UE de Type du matériel

Presafe 14 ATEX 5367

Category (catégorie) / Marking (marquage):

Junction Box

II 2 G Ex eb IIC T5 Gb IP66 -40°C≤Ta≤+65°C

Production Quality Assurance Notification: Notification Assurance Qualité de Production **INERIS 00ATEXQ403**

Issued by the Notified Body n°0080: Délivré par l'Organisme notifié numéro 0080 INERIS, Parc Alata 60550 Verneuil en Halatte France

Ce matériel ne doit être utilisé qu'à ce pour quoi il a été conçu et doit être installé en conformité avec

les règles applicables et suivant les recommandations du fabricant.

This equipment shall be used for the purpose for which it has been designed and be installed in accordance with relevant standards and with manufacturer's recommendations.

A Arras, 02/12/2021 / Arras on December 02nd, 2021

Teledyne Oldham Simtronics S.A.S.

Z.I. EST - C.S. 20417 62027 ARRAS Cedex – FRANCE Tel.: +33(0)3 21 60 80 80 www.teledyneGFD.com

AM. Dassonville Certification Responsible

Page 1 | 1

UK DECLARATION of **CONFORMITY**

Réf: UK_GD1_rev1.doc

Nous, We,

Teledyne Oldham Simtronics S.A.S., ZI Est, 62000 Arras France

Declare, under our sole responsibility that the following equipment :

Toxic Open Path Detector GD1

Is designed and manufactured in compliance with the following applicable Directives and standards:

I) ATEX: SI 2016 No. 1107 (amended by SI 2019 No. 696)

EN 60079-0: 2018 Designated applied Standards

EN 60079-1: 2014 EN 60079-28 : 2015

UKEX Certificate number **DNV 22 UKEX 42159X**

Category / Marking : II 2 G

Ex db [op is] IIC T6/T5 Gb-55°C≤Ta≤+65/75°C

Issued by the approved Body n°2503 Eurofins E&E CML Limited,

Newport Business Park

CML 21UKQAN14216

New Port Road, Ellesmere Port, UK

II) CEM: SI 2016 No 1091

EN 50270: 2015 for type 2 Applied Standards

This equipment shall be used for the purpose for which it has been designed and be installed in accordance with relevant standards and with manufacturer's recommendations.

Arras, April, 25th, 2023

UK QAN:

Teledyne Oldham Simtronics S.A.S.
Z.I. EST - C.S. 20417
62027 ARRAS Cedex - FRANCE
Tel.: +33(0)3 21 60 80 80
www.teledyneGFD.com

AM. Dassonville Certification Responsible

Page 1 | 1

UK DECLARATION of CONFORMITY

Réf: UK_JB_rev1.doc

Nous, We, Teledyne Oldham Simtronics S.A.S., ZI Est, 62000 Arras France

Declare, under our sole responsibility that the following equipment :

Junction box

Is designed and manufactured in compliance with the following applicable Directives and standards:

I) ATEX: SI 2016 No. 1107 (amended by SI 2019 No. 696)

Designated applied Standards EN 60079-0: 2018

EN 60079-7: 2015 / A1: 2018

EU type examination certificate: *Attestation UE de Type du matériel*

DNV 22 UKEX 42153

Category / Marking :

 $\langle \mathcal{E} \mathbf{x} \rangle_{\mathbf{H} \mathbf{2} \mathbf{G}}$

Ex eb IIC T5 Gb IP66 -40°C≤Ta≤+65°C

UK QAN: CML 21UKQAN14216

Issued by the approved Body n°2503 Eurofins E&E CML Limited,

Newport Business Park

New Port Road, Ellesmere Port, UK

This equipment shall be used for the purpose for which it has been designed and be installed in accordance with relevant standards and with manufacturer's recommendations.

Arras, April, 25th, 2023

Teledyne Oldham Simtronics S.A.S.
Z.I. EST - C.S. 20417
62027 ARRAS Cedex - FRANCE
Tel.: +33(0)3 21 60 80 80
www.teledyneGFD.com

AM. Dassonville Certification Responsible

<u>Dansil</u>

Page 1 | 1

THIS PAGE LEFT INTENTIONALLY BLANK

P/N: 850-816926 EN

Revision 8b

GD1 MK3

TOXIC OPEN PATH GAS DETECTOR USER MANUAL

THIS PAGE LEFT INTENTIONALLY BLANK

THIS PAGE LEFT INTENTIONALLY BLANK

AMERICAS

4880 Skinner Rd Cypress, TX 77429 USA

Tel.: +1-713-559-9200

EMEA

Rue Orfila Z.I. Est – CS 20417 62027 ARRAS Cedex, FRANCE

Tel.: +33 (0)3 21 60 80 80 TGFD_APAC@Teledyne.com

ASIA PACIFIC

Room 04, 9th Floor, 275 Ruiping Road, Xuhui District, Shanghai CHINA

www.teledynegasandflamedetection.com

© 2023 Teledyne Oldham Simtronics. All right reserved.

 $P/N:850-816926\;EN\;Revision\;8b/September\;2023$